یاری فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

یاری فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

سیستم قدرت نیروگاه

اختصاصی از یاری فایل سیستم قدرت نیروگاه دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 36

 

 

موضوع :

سیستم قدرت نیروگاه

درس مربوطه:

مبانی سیستمهای قدرت

استاد :

جناب آقای کریمی

محقق :

جواد عابدی

بهار 87

نیروگاه

معرفی انواع نیروگاه ها

نیروگاه دیزلی

نیروگاه آبی

نیروگاه اتمی

نیروگاه گازی

نیروگاه بخاری

نیروگاه مختلط

مقدمه کلی:

در این مقاله به برسی کلی نیروگاه های حرارتی و نیروگاه های اتمی میپردازیم

و اشارهای به نیروگاس سیکل ترکیبی شده است

نیروگاه حرارتی

مقدمه

نیروگاه حرارتی جهت تولید انرژی الکتریکی بکار می‌رود که در عمل پره‌های توربین بخار توسط فشار زیاد بخار آب ، به حرکت در آمده و ژنراتور را که با توربین کوپل شده است، به چرخش در می‌آورد. در نتیجه ژنراتور انرژی الکتریکی تولید می‌کند. نیروگاه حرارتی به مقدار زیادی آب نیاز دارد. در نتیجه در محلهایی که آب به فراوانی یافت می‌شود، ترجیحا از این نوع نیروگاه استفاده می‌شود. چون انرژی الکتریکی را به روشهای دیگری ، مثل انرژی آب در پشت سدها (توربین آبی) ، انرژی باد (توربین بادی) ، انرژی سوخت (توربین گازی) و انرژی اتمی هم می‌توان تهیه کرد. سوخت نیروگاه حرارتی شامل ، فروت و یا گازوئیل طبیعی است.

 

مشخصات فنی نیروگاه

سوخت

سوخت اصلی نیروگاه ، سوخت سنگین (مازوت) می‌باشد که توسط تانکرها حمل و از طریق ایستگاه تخلیه سوخت در سه مخزن 33000 متر مکعبی ذخیره می‌گردد. سوخت راه اندازی ، سوخت سبک (گازوئیل) است که در یک مخزن 430 متر مکعبی نگهداری می‌شود.

آب

آب مصرفی نیروگاه ، جهت تولید بخار و مصرف برج خنک کن و سیستم آتش نشانی ، از طریق چاه عمیق تامین می‌گردد.

سیستم خنک کن

برج خنک کن نیروگاه از نوع تر می‌باشد و 18 عدد فن (خنک کن) دارد که هر یک دارای الکتروموتوری به قدرت 132kw و سرعت سرعت 141RPM می‌باشد و بوسیله دو عدد پمپ توسط لوله‌ای به قطر 5.2 متر آب مورد نیاز خنک کن تامین می‌گردد. دمای آب برگشتی در برج خنک کن 29.6 درجه سانتیگراد و دمای آب خروجی از برج 21.6 درجه سانتیگراد می‌باشد. برج خنک کننده :

 

در گزینش صحیح دستگاه خنک کننده آب متناسب با مقتضیات یک پروژه معین باید چند عامل اصلی را لحاظ کرد

توان خنک کنندگی , مسائل اقتصادی , سرویسهای مورد نیاز و شرایط طبیعی و . . .

این عوامل اغلب به هم وابستگی متقابل دارنداما هر یک بایستی جداگانه مورد بررسی قرار گیرند از آنجا که ممکن است انواع زیادی از دستگاهها توانایی تامین مقصود را داشته باشند عواملی همچون ابعاد دستگاه , مساحت محل نصب , حجم هوای جریانی , میزان مصرف انرژی فن و پمپ , موارد بکار رفته در ساخت دستگاه , سهولت یافتن دستگاه در بازار بر انتخاب نهایی تاثیر گذار خواهد بود.

برجهای خنک کن در اندازه های مختلف برای دفع حرارت از یک تا چند تن تبرید ساخته می شوند, برجهای بزرگ برای کاربردهای معین ساخته می شوند و معمولا از چندین سلول تشکیل می شوند که هر یک اجزای خاص خود را دارند.

 


دانلود با لینک مستقیم


سیستم قدرت نیروگاه

تحقیق درمورد کارآموزی در نیروگاه شهید سلیمی نکا 24 ص

اختصاصی از یاری فایل تحقیق درمورد کارآموزی در نیروگاه شهید سلیمی نکا 24 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 26

 

3- تغذیه مصرف داخلی نیروگاه :

انرژی لازم جهت تغذیه مصارف داخلی نیروگاه از جمله موتور پمپ های روغنی و آب روغن و سوخت و فن های مختلف و غیره از انرژی تولیدی خود نیروگاه تأمین می گردد . جهت تغذیه مصارف داخلی یک نیروگاه که در شکل صفحه نشان داده شده است . انرژی لازم جهت مصارف داخلی هر یک از واحدها از خروجی ژنراتور اصلی مربوطه انشعاب می گردد و در این مدار هم به علت اشکالات احتمالی در شبکه ها می تواند فیدر مصرف داخلی دچار تغییرات ولتاژ و فرکانس گردد ولی تغییرات فرکانس را می توان به علت جزئی بود نشان پذیرفت همان طوریکه اشاره شد تغییرات شدید ولتاژ به علت ایجاد اتصال کوتاه در بیرون از شبکه می تواند با عملکرد سریع حفاظتهای مدرن در کوتاهترین زمان طوری محدود شود که به فید مصرف داخلی هیچ گونه صدمه ای وارد نگردد به علاوه ولتاژ اولیه ترانس مصرف داخلی که انشعاب آن بلافاصله بعد از ژنراتور قرار دارد ولتاژ خروجی ترانس برابر ولتاژ باسهای مصرف داخلی می باشد بالاترین مقدار را در اثر یک اتصال کوتاه در شبکه به علت افت ولتاژ در ترانس واحد و مسیر کابلها با نقطه اتصال کوتاه داراست این تغییرات هم بدین طریق حفاظت می گردد که تحریک ژنراتور در موقع بروز اتصال کوتاه در شبکه بطور اتومات به وسیله تنظیم کننده ولتاژ سریع تقویت می شود و مسئله مهم بخصوص در این نوع مدار این است که تاسیسات مصرف داخلی هر واحد بکلی از هم مجزا بوده بطوریکه اشکال در یک واحد هیچ گونه اثری در واحدهای دیگر نخواهد داشت جهت راه اندازی واحدهای بخاری از حالت ساکن احتیاج به یک منبع تغذیه جداگانه ای است که این انرژی معمولا‍‌َ از شبکه اصلی گرفته می شود .

1-3- مشخصات مصرف داخلی نیروگاه نکا :

نیروگاه حرارتی نکا دارای مصرف کننده های مختلف با سطح ولتاژهای مختلف می باشد مصرف کننده های V 24 و V 48 که برای تغذیه سولونوئید والوها و کارتهای فرمان ابزار دقیق استفاده می شود و مصرف کننده های V 220 و V 380 که برای روشنایی و موتورها با قدرت پایین تر استفاده می شود و بعضی از الکتروموتورها قدرت آن زیاد بوده و تغذیه آن برق KV 3/6 می باشد به همین منظور برای هر واحد یک سوییچ گیر KV 3/6 و برای چهار واحد یک سوییچ گیر KV 3/6 مشترک در نظر گرفته شده است . در زمانی که ژنراتور واحد ولتاژ داشته باشد . از خروجی KV 21 ژنراتور یک انشعاب گرفته شده و به ترانس BT می رود . این ترانس دارای دو سیم پیچ خروجی می باشد که هر کدام برق KV 21 را تبدیل به KV 3/6 می کنند و یک خروجی آن که باس BA و خروجی دیگر آن به باس BB می رود . این دو باس مصرف کننده های بزرگ را تغذیه می کنند . همچنین از این باسها چهار انشعاب گرفته شده و به ترانسهای CT1 , CT2 , CT3 , CT4 می رود و تبدیل به V 380 می شود و مصرف کننده های V 380 از این طریق تغذیه می شوند . در صورتی که ژنراتورها خروجی نداشته باشد و در ابتدای راه اندازی از طریق شبکه دو عدد ترانس T6 , T5 در پست نیروگاه در نظر گرفته شده است که یک خروجی آنها KV 20 می باشد و خروجی T5 به ترانس استارت آپ 10 BT 01 و خروجی T6 به ترانس استارت آپ 10 BT 02 می رود و در این ترانسها برق KV 20 تبدیل به KV 3/6 شده و خروجی آن به باسهای 10 BN و 10 BM که سویچ گیر KV 3/6 مشترک را تشکیل می دهد می رود . از این طریق ما می توانیم در ابتدای راه اندازی استفاده کرده و واحد را راه اندازی نماییم . این باسها در حالت کار عادی واحدها نیز در مدار بوده مرف کننده های KV 3/6 عمومی نظیر کمپرسورها را تغذیه می نماید . اگر چنانچه بخواهیم کار تعمیراتی روی ترانسها انجام دهیم . بعنوان مثال اگر بخواهیم مقره های ترانس T6 را شست و شو دهیم یا تعمیرات روی بریکرهای KV 20 مربوط به واحد بخار (4482) را انجام دهیم می توان باس کوپلر (10 CA / CB مربوط به کمپرسورها ) و ( 10 CC / CD مربوط به تاسیسات شیمی ) و ( 10 CG / CH مربوط به تجهیزات آب دریا ) و ( 10 CE / CF مربوط به تاسیسات روشنایی) و ( 10 CJ / CK مربوط به تجهیزات سوخت رسانی) را با OFF کردن بریکرهای فوق از 10 BM همزمان ON نمود

در موقع انجام این مانور لازم است که اپراتور کمپرسورخانه در محل کمپرسورها حضور داشته باشد و یکی از کمپرسورهای 15 یا 16 بطور دستی در مدار و بقیه کمپرسورها در حالت اتومات باشند ( توسط اپراتور کمپرسورخانه) وقتی باس کوپلرها بسته شد به مسئول پست جهت بی برق کردن ترانس T6 و یا قطع کردن بویلر (4482) اطلاع داده شود (توسط اپراتور مسئول الکتریک یا مهندس شیفت) پس از قطع بریکر KV 20 (4482) یا OFF شدن ترانس T6 ، باس کوپلر 10 BN ، 10BM بطور اتوماتیک می بندد و سپس تمامی باس کوپلر یاد شده همزمان با ON شدن تغذیه اصلی 10BM روی OFF قرار داده می شود دیزلهای اضطراری 1 و 2 مربوط به تاسیسات عمومی نیروگاه استارت و با ظرفیت 5/2 یا 3 مگاوات به مدار آورده می شود (توسط اپراتور کمپرسورخانه) عمل استارت دیزلهای جهت پایداری و سیفتی بیشتر شبکه انجام می گیرد . حالا


دانلود با لینک مستقیم


تحقیق درمورد کارآموزی در نیروگاه شهید سلیمی نکا 24 ص

مقاله درباره مشخصات یک نیروگاه با سوخت هسته ای

اختصاصی از یاری فایل مقاله درباره مشخصات یک نیروگاه با سوخت هسته ای دانلود با لینک مستقیم و پر سرعت .

مقاله درباره مشخصات یک نیروگاه با سوخت هسته ای


مقاله درباره مشخصات یک نیروگاه با سوخت هسته ای

 

   لینک پرداخت و دانلود در "پایین مطلب"

 

 فرمت فایل: word (قابل ویرایش و آماده پرینت)

 

 تعداد صفحات:94

 

به فیلم زیرتوجه کنید. در این فیلم نمایی از یک نیروگاه هسته ای را مشاهده میکنید.

 

 

 

مزایا

    نیروگاه هسته ای تمیز هستند و باعث خرابی کمتری در محیط زیست (نسبت به نیروگاه های نفتی و گازی) می شوند. نیروگاه هسته ای اثر گلخانه ای ندارند و باعث باران اسیدی نمی شوند.

مساحت نیروگاه هسته ای در مقایسه با نیروگاههایی مثل ذغال سنگ بسیار کمتر می باشد

استفاده از نیروگاه هسته ای مانع از بین رفتن سوخت فسیلی می شود.

 

   مقدار کمی سوخت قادر است مقدار قابل توجهی انرژی تولید کند.
مضرات باقی مانده سوخت هسته ای (زباله هسته ای) برای هزاران سال باقی می ماند. نیروگاههایی که به پایان عمر خود می رسند بایستی بدقت مورد حفاظت قرار گیرند

کودکانی که در نزدیکی نیروگاه هسته ای هستند، به مقدار زیادی در معرض خطر سرطان می‌باشند

تاسیس نیروگاه هسته ای بسیار گران و پر هزینه می باشد. مردم عموماً از نیروگاه هسته‌ای می ترسند. منابع اورانیوم محدود هستند. در ضمن منابع اورانیوم قابل بازیافت نمی باشند.

    هزینه دفن زباله های هسته ای بسیار زیاد می باشد و خطر نشت مواد رادیواکتیو از این زباله ها بسیار زیاد است .

نیروگاه هسته ای و محیط زیست

    حمل و نقل مواد رادیواکتیو خطرناک می باشد و همیشه این احتمال وجود دارد که مواد رادیو اکتیو از محفظه هایشان به بیرون نشت کند. زباله های هسته ای دفن شده در زمین یا اعماق دریاها هزاران سال برای محیط زیست آلوده کننده هستند. یکی از مواد موجود در زباله های هسته ای پلوتونیوم می باشد که در ساخت سلاح بکار می رود، این ماده میلیونها سال در طبیعت باقی می ماند.

 

 

 ساختار نیروگاه های اتمی جهان

 

 

برحسب نظریه اتمی عنصر عبارت است از یک جسم خالص ساده که با روش های شیمیایی نمی توان آن را تفکیک کرد. از ترکیب عناصر با یکدیگر اجسام مرکب به وجود می آیند. تعداد عناصر شناخته شده در طبیعت حدود ۹۲ عنصر است

. هیدروژن اولین و ساده ترین عنصر و پس از آن هلیم، کربن، ازت، اکسیژن و... فلزات روی، مس، آهن، نیکل و... و بالاخره آخرین عنصر طبیعی به شماره ۹۲، عنصر اورانیوم است. بشر توانسته است به طور مصنوعی و به کمک واکنش های هسته ای در راکتورهای اتمی و یا به کمک شتاب دهنده های قوی بیش از ۲۰ عنصر دیگر بسازد که تمام آن ها ناپایدارند و عمر کوتاه دارند و به سرعت با انتشار پرتوهایی تخریب می شوند. اتم های یک عنصر از اجتماع ذرات بنیادی به نام پرتون، نوترون و الکترون تشکیل یافته اند. پروتون بار مثبت و الکترون بار منفی و نوترون فاقد بار است

تعداد پروتون ها نام و محل قرار گرفتن عنصر را در جدول تناوبی (جدول مندلیف) مشخص می کند. اتم هیدروژن یک پروتون دارد و در خانه شماره ۱ جدول و اتم هلیم در خانه شماره ۲، اتم سدیم در خانه شماره ۱۱ و... و اتم اورانیوم در خانه شماره ۹۲ قرار دارد. یعنی دارای ۹۲ پروتون است.

ایزوتوپ های اورانیوم

تعداد نوترون ها در اتم های مختلف یک عنصر همواره یکسان نیست که برای مشخص کردن آنها از کلمه ایزوتوپ استفاده می شود. بنابراین اتم های مختلف یک عنصر را ایزوتوپ می گویند. مثلاً عنصر هیدروژن سه ایزوتوپ دارد: هیدروژن معمولی که فقط یک پروتون دارد و فاقد نوترون است. هیدروژن سنگین یک پروتون و یک نوترون دارد که به آن دوتریم گویند و نهایتاً تریتیم که از دو نوترون و یک پروتون تشکیل شده و ناپایدار است و طی زمان تجزیه می شود.


ایزوتوپ سنگین هیدروژن یعنی دوتریم در نیروگاه های اتمی کاربرد دارد و از الکترولیز آب به دست می آید. در جنگ دوم جهانی آلمانی ها برای ساختن نیروگاه اتمی و تهیه بمب اتمی در سوئد و نروژ مقادیر بسیار زیادی آب سنگین تهیه کرده بودند که انگلیسی ها متوجه منظور آلمانی ها شده و مخازن و دستگاه های الکترولیز آنها را نابود کردند.
غالب عناصر ایزوتوپ دارند از آن جمله عنصر اورانیوم، چهار ایزوتوپ دارد که فقط دو ایزوتوپ آن به علت داشتن نیمه عمر نسبتاً بالا در طبیعت و در سنگ معدن یافت می شوند. این دو ایزوتوپ عبارتند از اورانیوم ۲۳۵ و اورانیوم ۲۳۸ که در هر دو ۹۲ پروتون وجود دارد ولی اولی ۱۴۳ و دومی ۱۴۶ نوترون دارد. اختلاف این دو فقط وجود ۳ نوترون اضافی در ایزوتوپ سنگین است ولی از نظر خواص شیمیایی این دو ایزوتوپ کاملاً یکسان هستند و برای جداسازی آنها از یکدیگر حتماً باید از خواص فیزیکی آنها یعنی اختلاف جرم ایزوتوپ ها استفاده کرد. ایزوتوپ اورانیوم ۲۳۵ شکست پذیر است و در نیروگاه های اتمی از این خاصیت استفاده می شود و حرارت ایجاد شده در اثر این شکست را تبدیل به انرژی الکتریکی می نمایند. در واقع ورود یک نوترون به درون هسته این اتم سبب شکست آن شده و به ازای هر اتم شکسته شده ۲۰۰ میلیون الکترون ولت انرژی و دو تکه شکست و تعدادی نوترون حاصل می شود که می توانند اتم های دیگر را بشکنند. بنابراین در برخی از نیروگاه ها ترجیح می دهند تا حدی این ایزوتوپ را در مخلوط طبیعی دو ایزوتوپ غنی کنند و بدین ترتیب مسئله غنی سازی اورانیوم مطرح می شود.

ساختار نیروگاه اتمی

به طور خلاصه چگونگی کارکرد نیروگاه های اتمی را بیان کرده و ساختمان درونی آنها را مورد بررسی قرار می دهیم

طی سال های گذشته اغلب کشورها به استفاده از این نوع انرژی هسته ای تمایل داشتند و حتی دولت ایران ۱۵ نیروگاه اتمی به کشورهای آمریکا، فرانسه و آلمان سفارش داده بود. ولی خوشبختانه بعد از وقوع دو حادثه مهم تری میل آیلند (Three Mile Island) در ۲۸ مارس ۱۹۷۹ و فاجعه چرنوبیل (Tchernobyl) در روسیه در ۲۶ آوریل ۱۹۸۶، نظر افکار عمومی نسبت به کاربرد اتم برای تولید انرژی تغییر کرد و ترس و وحشت از جنگ اتمی و به خصوص امکان تهیه بمب اتمی در جهان سوم، کشورهای غربی را موقتاً مجبور به تجدیدنظر در برنامه های اتمی خود کرد

نیروگاه اتمی در واقع یک بمب اتمی است که به کمک میله های مهارکننده و خروج دمای درونی به وسیله مواد خنک کننده مثل آب و گاز، تحت کنترل درآمده است. اگر روزی این میله ها و یا پمپ های انتقال دهنده مواد خنک کننده وظیفه خود را درست انجام ندهند، سوانح متعددی به وجود می آید و حتی ممکن است نیروگاه نیز منفجر شود، مانند فاجعه نیروگاه چرنوبیل شوروی. یک نیروگاه اتمی متشکل از مواد مختلفی است که همه آنها نقش اساسی و مهم در تعادل و ادامه حیات آن را دارند. این مواد عبارت اند از:

1- ماده سوخت متشکل از اورانیوم طبیعی، اورانیوم غنی شده، اورانیوم و پلوتونیم است

عمل سوختن اورانیوم در داخل نیروگاه اتمی متفاوت از سوختن زغال یا هر نوع سوخت فسیلی دیگر است. در این پدیده با ورود یک نوترون کم انرژی به داخل هسته ایزوتوپ اورانیوم ۲۳۵ عمل شکست انجام می گیرد و انرژی فراوانی تولید می کند. بعد از ورود نوترون به درون هسته اتم، ناپایداری در هسته به وجود آمده و بعد از لحظه بسیار کوتاهی هسته اتم شکسته شده و تبدیل به دوتکه شکست و تعدادی نوترون می شود. تعداد متوسط نوترون ها به ازای هر ۱۰۰ اتم شکسته شده ۲۴۷ عدد است و این نوترون ها اتم های دیگر را می شکنند و اگر کنترلی در مهار کردن تعداد آنها نباشد واکنش شکست در داخل توده اورانیوم به صورت زنجیره ای انجام می شود که در زمانی بسیار کوتاه منجر به انفجار شدیدی خواهد شد.

در واقع ورود نوترون به درون هسته اتم اورانیوم و شکسته شدن آن توام با انتشار انرژی معادل با ۲۰۰ میلیون الکترون ولت است این مقدار انرژی در سطح اتمی بسیار ناچیز ولی در مورد یک گرم از اورانیوم در حدود صدها هزار مگاوات است. که اگر به صورت زنجیره ای انجام شود، در کمتر از هزارم ثانیه مشابه بمب اتمی عمل خواهد کرد.
اما اگر تعداد شکست ها را در توده اورانیوم و طی زمان محدود کرده به نحوی که به ازای هر شکست، اتم بعدی شکست حاصل کند شرایط یک نیروگاه اتمی به وجود می آید. به عنوان مثال نیروگاهی که دارای ۱۰ تن اورانیوم طبیعی است قدرتی معادل با ۱۰۰ مگاوات خواهد داشت و به طور متوسط ۱۰۵ گرم اورانیوم ۲۳۵ در روز در این نیروگاه شکسته می شود و همان طور که قبلاً گفته شد در اثر جذب نوترون به وسیله ایزوتوپ اورانیوم ۲۳۸ اورانیوم ۲۳۹ به وجود می آمد که بعد از دو بار انتشار پرتوهای بتا (یا الکترون) به پلوتونیم ۲۳۹ تبدیل می شود که خود مانند اورانیوم ۲۳۵ شکست پذیر است. در این عمل ۷۰ گرم پلوتونیم حاصل می شود. ولی اگر نیروگاه سورژنراتور باشد و تعداد نوترون های موجود در نیروگاه زیاد باشند مقدار جذب به مراتب بیشتر از این خواهد بودو مقدار پلوتونیم های به وجود آمده از مقدار آنهایی که شکسته می شوند بیشتر خواهند بود. در چنین حالتی بعد از پیاده کردن میله های سوخت می توان پلوتونیم به وجود آمده را از اورانیوم و فرآورده های شکست را به کمک واکنش های شیمیایی بسیار ساده جدا و به منظور تهیه بمب اتمی ذخیره کرد.

2-  نرم کننده ها موادی هستند که برخورد نوترون های حاصل از شکست با آنها الزامی است و برای کم کردن انرژی این نوترون ها به کار می روند. زیرا احتمال واکنش شکست پی در پی به ازای نوترون های کم انرژی بیشتر می شود. آب سنگین (D2O) یا زغال سنگ (گرافیت) به عنوان نرم کننده نوترون به کار برده می شوند

3- میله های مهارکننده: این میله ها از مواد جاذب نوترون درست شده اند و وجود آنها در داخل رآکتور اتمی الزامی است و مانع افزایش ناگهانی تعداد نوترون ها در قلب رآکتور می شوند. اگر این میله ها کار اصلی خود را انجام ندهند، در زمانی کمتر از چند هزارم ثانیه قدرت رآکتور چند برابر شده و حالت انفجاری یا دیورژانس رآکتور پیش می آید. این میله ها می توانند از جنس عنصر کادمیم و یا بور باشند

4- اد خنک کننده یا انتقال دهنده انرژی حرارتی: این مواد انرژی حاصل از شکست اورانیوم را به خارج از رآکتور انتقال داده و توربین های مولد برق را به حرکت در می آورند و پس از خنک شدن مجدداً به داخل رآکتور برمی گردند. البته مواد در مدار بسته و محدودی عمل می کنند و با خارج از محیط رآکتور تماسی ندارند. این مواد می توانند گاز CO2 ، آب، آب سنگین، هلیم گازی و یا سدیم مذاب باشند

انواع راکتور

راکتورهای اتمی را معمولا برحسب خنک کننده، کند کننده، نوع و درجه غنای سوخت در آن طبقه بندی می کنند. معروفترین راکتورهای اتمی، راکتورهایی هستند که از آب سبک به عنوان خنک کننده و کند کننده و اورانیوم غنی شده(2 تا 4 درصد اورانیوم 235) به عنوان سوخت استفاده می کنند. این راکتورها عموما تحت عنوان راکتورهای آب سبک(LWR ) شناخته می شوند. راکتورهای WWER,BWR,PWR از این دسته اند. نوع دیگر، راکتورهایی هستند که از گاز به عنوان خنک کننده، گرافیت به عنوان کند کننده و اورانیوم طبیعی یا کم غنی شده به عنوان سوخت استفاده می کنند. این راکتورها به گاز- گرافیت معروفند. راکتورهای HTGR,AGR,GCR از این نوع می باشند. راکتور PHWR راکتوری است که از آب سنگین به عنوان کندکننده و خنک کننده و از اورانیوم طبیعی به عنوان سوخت استفاده می کند. نوع کانادایی این راکتور به CANDU موسوم بوده و از کارایی خوبی برخوردار می باشد. مابقی راکتورها مثل FBR (راکتوری که از مخلوط اورانیوم و پلوتونیوم به عنوان سوخت و سدیم مایع به عنوان خنک کننده استفاده کرده و فاقد کند کننده می باشد) LWGR(راکتوری که از آب سبک به عنوان خنک کننده و از گرافیت به عنوان کند کننده استفاده می کند) از فراوانی کمتری برخوردار می باشند. در حال حاضر، راکتورهای PWR و پس از آن به ترتیب PHWR,WWER,BWR فراوانترین راکتورهای قدرت در حال کار جهان می باشند.

 به لحاظ تاریخی اولین راکتور اتمی در آمریکا بوسیله شرکت "وستینگهاوس" و به منظور استفاده در زیر دریائیها ساخته شد. ساخت این راکتور پایه اصلی و استخوان بندی تکنولوژی فعلی نیروگاههای اتمیPWR را تشکیل داد. سپس شرکت جنرال الکتریک موفق به ساخت راکتورهایی از نوع BWR گردید. اما اولین راکتوری که اختصاصا جهت تولید برق طراحی شده، توسط شوروی و در ژوئن 1954در "آبنینسک" نزدیک مسکو احداث گردید که بیشتر جنبه نمایشی داشت، تولید الکتریسیته از راکتورهای اتمی در مقیاس صنعتی در سال 1956 در انگلستان آغاز گردید. تا سال 1965 روند ساخت نیروگاههای اتمی از رشد محدودی برخوردار بود اما طی دو دهه 1966 تا 1985 جهش زیادی در ساخت نیروگاههای اتمی بوجود آمده است. این جهش طی سالهای 1972 تا 1976 که بطور متوسط هر سال 30 نیروگاه شروع به ساخت می کردند بسیار زیاد و قابل توجه است. یک دلیل آن شوک نفتی اوایل دهه 1970 می باشد که کشورهای مختلف را برآن داشت تا جهت تأمین انرژی مورد نیاز خود بطور زاید الوصفی به انرژی هسته ای روی آورند. پس از دوره جهش فوق یعنی از سال 1986 تاکنون روند ساخت نیروگاهها به شدت کاهش یافته بطوریکه بطور متوسط سالیانه 4 راکتور اتمی شروع به ساخت می شوند.

کشورهای مختلف در تولید برق هسته ای روند گوناگونی داشته اند. به عنوان مثال کشور انگلستان که تا سال 1965 پیشرو در ساخت نیروگاه اتمی بود، پس از آن تاریخ، ساخت نیروگاه اتمی در این کشور کاهش یافت، اما برعکس در آمریکا به اوج خود رسید. کشور آمریکا که تا اواخر دهه 1960 تنها 17 نیروگاه اتمی داشت در طول دهه های 1970و 1980 بیش از 90 نیروگاه اتمی دیگر ساخت. این مسئله نشان دهنده افزایش شدید تقاضای انرژی در آمریکاست. هزینه تولید برق هسته ای در مقایسه با تولید برق از منابع دیگر انرژی در امریکا کاملا قابل رقابت می باشد. هم اکنون فرانسه با داشتن سهم 75 درصدی برق هسته ای از کل تولید برق خود درصدر کشورهای جهان قرار دارد. پس از آن به ترتیب لیتوانی(73درصد)، بلژیک(57درصد)، بلغارستان و اسلواکی(47درصد) و سوئد (8/46درصد) می باشند. آمریکا نیز حدود 20 درصد از تولید برق خود را به برق هسته ای اختصاص داده است.

گرچه ساخت نیروگاههای هسته ای و تولید برق هسته ای در جهان از رشد انفجاری اواخر دهه 1960 تا اواسط 1980 برخوردار نیست اما کشورهای مختلف همچنان درصدد تأمین انرژی مورد نیاز خود از طریق انرژی هسته ای می باشند. طبق پیش بینی های به عمل آمده روند استفاده از برق هسته ای تا دهه های آینده همچنان روند صعودی خواهد داشت. در این زمینه، منطقه آسیا و اروپای شرقی به ترتیب مناطق اصلی جهان در ساخت نیروگاه هسته ای خواهند بود. در این راستا، ژاپن با ساخت نیروگاههای اتمی با ظرفیت بیش از 25000 مگا وات درصدر کشورها قرار دارد. پس از آن چین، کره جنوبی، قزاقستان، رومانی، هند و روسیه جای دارند. استفاده از انرژی هسته ای در کشورهای کاندا، آرژانتین، فرانسه، آلمان، آفریقای جنوبی، سوئیس و آمریکا تقریبا روند ثابتی را طی دو دهه آینده طی خواهد کرد.

غنی سازی اورانیم

تعاریف اصطلاحات در فیزیک هسته ای

ویژه هسته: یک هسته خاص با اعداد پروتونی (Z) و نوترونی (N) معین را گویند.

ایزوتوپ ها: ویژه هسته هایی با پروتون های یکسان و نوترون های مختلف را گویند.مثال:ایزوتوپ هیدروژن 21H و 31H می باشند.

ایزوتون ها: ویژه هسته هایی با نوترون برابر و پروتون مختلف را گویند.

ایزوبارها: ویژه هسته هایی با عدد جرمی A ی برابر (A=Z+N) را می گویند.

ایزومر: ویژه هسته هایی در حالت بر انگیخته با نیم عمر قابل اندازه گیری را ایزومر می نامند.

نوکلئون: ذرات تشکیل دهنده هسته) نوترون یا پروتون ) نوکلئون نام دارند.

مزون ها: ذراتی هستند با جرمی بین جرم الکترون و جرم پروتون. شناخته شده ترین مزون ها عبارتند از: مزون های پی که نقش مهمی در نیروهای هسته ای باز می کند و مزون های مو که در پدیده های پرتو کیهانی مهم است.

پوزیترون: الکترون با بار مثبت به عبارتی ذره ای با جرمی برابر جرم الکترون و باری برابر بار الکترون با علامت مثبت.

فوتون: کوانتوم تابش الکترومغناطیسی که معمولاً بصورت نور اشعه ایکس یا اشعه گاما ظاهر می شودبه عبارت دیگر کوچکترین ذرات سازنده نور فوتون ها هستند.

اسپین: صرفنظر از انرژی مربوط به چرخش الکترون به دور هسته اتمی الکترون نیز انرژی اضافی دیگری دارد که مربوط به چرخش حول محور خود می باشد .علاوه بر الکترون ذراتی دیگر مثل پروتون ، نوترون و فنون ها نیز به نوبه خود دارای اسپین می باشد.

آب سنگین: اصطلاحی که معمولا برای مولکول آب دارای دو اتم هیدروژن سنگین بکار می رود در این مولکول دو اتم دوتریوم بجای دو اتم هیدروژن جایگزین می شود (D2o). آب سنگین دارای خواص غیر عادی بوده و در راکتور های هسته ای نقش ایفا می کنند.

بتاترون: یک شتاب دهنده چرخه ای است این دستگاه شامل یک محفظه حلقوی بدون هوا است.که بین قطبهای یک الکترومغناطیس جای دارد یک چشمه الکترونی نیز داخل آن محفظه قرار گرفته است.

سوخت هسته ای پلوتنیم: یک عنصر شیمیائی یا عدد اتمی 92 و جرم اتمی 239 و یک فلز سمی است. به سادگی در هوا آتش می گیرد. کاربرد عمده پلوتونیم در راکتورهای هسته ای ، بمب های هسته ای ، چشمه ذره آلفا و اشعه گاما در پزشکی است.

کوانتا (Cuonta ): در سال 1901 فیزیکدان معاصر آلمانی ماکس پلانک پیشنهاد نمود که در انتقالات فیزیکی و تاثیرات متقابل اتم های ماده ، انرژی بصورت مقادیر مجزا یا "بسته های" کوچک نشر یافته و یا جذب می شوند. در نتیجه مطابق این تئوری، انرژی دارای مقادیر پیوسته ای نمی باشد. این قسمتهای کوچک نام کوانتوم بخود گرفت .

لباسهای بادی (Pneumatic suit ): لباسهای مخصوص که برای کار در هوای آلوده به مواد رادیو اکتیو ) بخارهای گازها ، ذرات بسیار ریز) بکار می رود .

مهندسی هسته ای:شاخه ای از مهندسی مواد که انرژی هسته ای و نیز موارد استفاده از آن را برای احتیاجات کلی و دفاعی مطالعه و بررسی می کند.

 

نوترنیو (Neutrino):ذراتی هستند خنثی که تشخیص و حتی به تله انداختن آنها خیلی مشکل است ضمن واپاشی بتای هسته های اتمی همراه الکترون یا پوزیترون گسیل می شود.

نیم عمر (Half Life): یکی از مهمترین کمیت های مشخصه مواد رادیو اکتیو نیم عمر آنها می باشد و طبق تعریف مدت زمانی است که فعالیت چشمه به نصف مقدار اولیه می رسد .

راکتورهای هسته ای: وسیله که درآن واکنش شکافت زنجیری کنترل شده انجام می شود. راکتور هسته ای نام دارد. اورانیوم و پلوتونیم به عنوان سوخت هسته ای به کار می رود.

پرتوهای کیهانی:تابش های کیهانی عبارتست از ذرات مثبت تند (پروتون ها ) و شماری ذرات آلفا و هسته های دیگر ذرات اولیه. پرتوهای کیهانی دارای انرژی عظیم از مرتبه میلیارد الکترون ولت است گاهی این انرژی به مقادیر حیرت آور از مرتبه 21 ev 10می رسد این پرتوها قادرند تا عمق اقیانوس ها و زمین هم نفوذ کنند.

جرم سکون (Rest Mass): جرم یک ذره ای که سرعت آن صفر بوده و یا صفر می شود را جرم سکون گویند.

جرم بحرانی سوخت هسته ای (Critical Mass): جرم بحرانی برای انجام یک واکنش زنجیری شکست عبارتست از کمترین مقدار سوخت هسته ای بطوریکه هر دوره نوترون باعث تولید یک دوره بعدی یا همان تعداد نوترون گردد یعنی کاهش نوترون در سوخت هسته ای بطور کامل جبران شود.

تعریف جرم بحرانی: کمترین مقدار لازم جرم فیزیکی ماده سوختنی جهت سوختن را جرم بحرانی گویند

 

 


دانلود با لینک مستقیم


مقاله درباره مشخصات یک نیروگاه با سوخت هسته ای

تحقیق درباره ی نیروگاه برق

اختصاصی از یاری فایل تحقیق درباره ی نیروگاه برق دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 79

 

نیروگاه برق

مقدمه

نیروگاههای آبی ، سازه‌های عظیم و پیچیده‌ای هستندکه در زمانی طولانی و با صرف هزینه‌های بسیار بنا می‌شوند. در کنار تولید برق، با احداث سدها و ایجاد مخازن تغییرات زیست محیطی و تحولات بسیاری در شرایط زندگی و توسعه اجتماعی، اقتصادی و حتی سیاسی منطقه اجرای طرح پدید می‌آید. در کشورهایی نظیر ایران که از کمبود منابع سرمایه‌گذاری رنج می‌برد و ظرفیتهای شناخته و ناشنانخته بسیارری جهت احداث نیروگاههای آبی در اختیار دارد، استراتژی توسعه نیروگاههای آبی نمی‌تواند فارغ از جنبه‌های دیگر توسعه کشور باشد. تا زمانیکه منبع اصلی سرمایه‌گذاری در این بخش در اختیار دولت و حکومت مرکزی است و امکان سرمایه‌گذاری بخش خصوصی بصورت واقعی و موثر فراهم نشده است تداوم سرمایه‌گذاری در زمان منطقی جهت بالفعل ساختن این ظرفیت‌ها در گرو پیشرفتهای ملموس و همه‌جانبه در منطقه اجرای طرح می‌باشد. طرحهای سد و نیروگاه کرخه و سد و نیروگاه کارون3 که هزینه آن به ترتیب در حدود 400 و 650 میلیارد تومان برآورد می‌شود مثالهای روشنی در این بحث می‌باشند. دریاچه‌های جدید، توسعه فعالیتهای کشاورزی، دامداری، گردشگری، جابجایی و اسکان مجدد روستاهای منطقه اجرای طرح، افزایش اشتغال صنعتی و خدماتی در دوره اجرای طرح و ایجاد فرصت جهت کسب مهارتهای مختلف و همچنین افزایش اشتغال کشاورزی، دامداری، خدماتی و صنعتی پس از شروع بهره‌برداری از نتایج مستقیم و غیرمستقیم این دو طرح می‌باشد. اگر این فرصتها در جهت تغییر سیمای منطقه طرح و توسعه همه‌جانبه مورد توجه قرار نگیرد. تداوم سرمایه‌گذاری در نیروگاههای آبی با محدودیتهای زیادی مواجه خواهند شد، حال آنکه اگر احداث یک نیروگاه آبی مترادف با ارمغان توسعه و پیشرفت برای هر منطقه باشد به جهت جلوگیری مناسب در تخصیص منابغ محدود خواهد انجامید. پروژه‌های سدهای بزرگ برقابی از جمله سرمایه‌گذاری‌های کلان محسوب می‌شوند که معمولاً به بیش از دو میلیارد دلار سرمایه نیاز دارند. اگر با معیارهای اقتصادی بین‌المللی بسنجیم، در ایران نیز طرحهای کارون 3 و کرخه (شامل شبکه‌های آبیاری و زه‌کشی) با سرمایه‌گذاری در حدود یک میلیارد دلار ساخته شده‌اند. چنین پروژه‌های بزرگی که معمولاً با یک یا چند هدف معین اجرا می‌شوند، امکانات و ظرفیت‌های بالقوه‌ای در پیرامون خود ایجاد می‌کنند. این آثار و پتانسیل‌ها را می‌توان در سه دوره‌ی قبل از ساخت (مطالعه و طراحی)، حین ساخت و پس از ساخت (بهره‌برداری و از کاراندازی) مورد بررسی قرار داد. 1-پتانسیل‌ها و آثار قبل از ساخت مرحله مطالعات و طراحی سدهای بزرگ بسیار طولانی است و نتایج آن مهمترین سند برای تصمیم‌گیری در خصوص احداث سدها بشمار می‌آید. از طرف دیگر تاخیر جدی بین تصمیم‌گیری برای احداث یک سد و تامین مالی برای شروع اجرای آن وجود دارد در این دوران، سرمایه‌گذاری در منطقه طرح دچار تزلزل خواهد بود . از یک طرف ممکن است بخش خصوصی یا دولتی که قصد سرمایه‌گذاری در منطقه را دارد بدلیل ترس از به زیر آب رفتن سرمایه خود دست از سرمایه‌گذاری بکشد و عملاً منطقه را از نظر رونق اقتصادی با مشکل مواجه سازد. از طرف دیگر ممکن است دستگاههای دولتی و یا کشاورزانی که از محدوده اجرای طرح کاملاً آگاه نیستند و یا نسبت به زمان شروع و پایان پروژه اطمینان کافی ندارند، اقدام به طراحی و سرمایه‌گذاری در جایی کنندکه بزودی و پس از شروع احداث در محدوده دریاچه سد قرار گیرد. از این نمونه پیرامون سدهای کرخه، کارون 3 و کارون4 موارد فراوانی به چشم می‌خورد. حدود 21 کیلومتر مسیر سخت جاده روستایی و شوسه در ساحل چپ رودخانه کارون 3 ساخته شده، بخشی از جاده ایذه به شهرکرد که در دوران مطالعات و طراحی سد کارون4 ساخته شده و یک دستگاه پل روستایی در حاشیه دریاچه کرخه به زیر آب خواهد رفت. همچنین تعداد 12 واحد ساختمان بهداشتی، آموزشی و تاسیسات آبرسانی در روستاهای واقع در مخزن کارون3 نیز که در حین سالهای طراحی پروژه ساخته شده‌اند، در اثر آبگیری تخریب خواهند شد. این موارد که قطعاً دوباره‌کاری و اتلاف سرمایه محسوب می‌شود، ناشی از فقدان یک سازمان همه جانبه‌نگر در محدوده ساخت سدهای بزرگ است. این نقیصه در جائیکه یک سرمایه‌گذاری عظیم در حال طراحی است کاملاً مشهود و در عین حال عواقب آن بسیار پرهزینه است. از سوی دیگر پتانسیل‌هایی برای پیشرفت و توسعه در منطقه طرح، همزمان با طراحی پروژه وجود دارد که در صورت عدم استفاده از این فرصتها، خود به تهدید تبدیل می‌شوند. هنگامی که یک پروژه سدسازی را طراحی می‌کنیم علاوه بر مسائل فنی آن، می‌دانیم که به نیروی انسانی متخصص، تکنسین و کارگر ماهر نیاز خواهد داشت. این یک فرصت برای منطقه خواهد بود تا در زمان اجرای پروژه نیازی به جذب نیروهای متخصص، تکنسین و کارگر ماهر از خارج منطقه نباشد. حدود 70% نیروی انسانی شاغل در زمان اجرای سدهای کرخه و کارون 3 بومی بوده‌اند ولی تقریباً بیش از 90% آنها کارگر ساده و


دانلود با لینک مستقیم


تحقیق درباره ی نیروگاه برق

تحقیق درباره ی کارون 3 محمدی

اختصاصی از یاری فایل تحقیق درباره ی کارون 3 محمدی دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 73

 

جزوه تکنولوژی گاورنرهای نیروگاه کارون 3

گشودگی دریچه های توربین، سرعت و قدرت خروجی از ژنراتورها بوسیله گاورنرهای دیجیتالی کنترل می شوند که روی تابلو گاورنر نصب شده اند ابعاد این تابلو 2200*800*800 میلی متر می باشد محل قرار گرفتن آن بطور مشترک با تابلو کنترل واحد U.C.B می باشد جهت اطلاعات بیشتر به نقشه شماره 061824-2840 رجوع شود.

طراحی سیستم گاورنر طوری است که از دو قسمت کاملا" مجزا تشکیل شده که هر قسمت به تنهایی کنترل کامل سیستم را بعهده می گیرد و با نام های گاورنر اصلی و گاورنر پشتیبان نامیده می شوند.

علاوه بر تجهیزات فوق تابلو گاورنر مجهز به دستگاههای دریافت اطلاعات مجزا کننده سیگنال و سیگنال های مکالماتی می باشد.

مشخصات گاورنرهای دیجیتالی

1. منبع تغذیه با شماره 1- POWER. SUPPLY MODULE PCD4N210

2. حافظه برای مشتری 1- USER. MEMORY MODULE PCD7R110

3 . واحد پردازشگر زوجی با تابلوهای اینتر فیس با شماره

PCD4 M445 1- DOUBLE PROCESSOR MODULE WITH SERIAL IN TERFACE گاورنر پشتیبان با پردازشگر فرد BACK UP GOVERNOR WITH SINGLE PROCESSOR MODULE

4. دو عدد واحد ورودی زوجی 2. BINARY INPUT MODULES PCD4E

5. دو واحد خروجی زوجی 2. BINAR OUT PUT MODULES PCD4A400

6. دو واحد آنالوگ با 4 ورودی و 2 خروجی PCD4W100

7. یک واحد انتقال دهنده سرعت جهت اندازه گیری سرعت PCD4 F2001 راهنمای روش صحیح بهره برداری از دستگاه روی یک کارت الکترونیکی فشرده (EP ROM) ذخیره شده تا در صورت قطع برق بمدت نسبتا" طولانی اطلاعات از دست نرود.

تمام واحدهای حافظه داخلی از جمله حافظه کار به برق DC وصل شده بنابراین شرایط افت لحظه ای ولتاژ مشکلی ایجاد نمی کند واحدهای ورودی و خروجی بر اساس مشخصه های نیروگاه تنظیم شده اند.

1.2 تابلو گاورنر ترمینال بهره برداری OPERATOR TERMINAL

عملیات زیر را بوسیله ترمینال بهره برداری می توان انجام داد.

1. بهره برداری محلی از واحد

2. نشان دادن مقادیر غیرعادی پارامترهای مختلف

3. نشان دادن عملکرد آلارم ها و ریست نمودن آن

4. نشان دادن تاریخچه آلارمها

5. انجام وظایف مخصوص

پریک از گاورنرهای اصلی یا پشتیبان دارای ترمینال بهره برداری جداگانه می باشند برای گاورنر اصلی ترمینال بهره برداری روی درب تابلو گاورنر نصب شده است. ترمینال بهره برداری گاورنر پشتیبان روی درب جلو تابلو کنترل، سیستم روغن نصب شده است

1.3 دستگاههای خارجی EXTERNAL DEVICE

دستگاههای مورد نیاز پردازش اطلاعات ( سرعت-وضعیت دریچه ها-قدرت) و تقویت کننده های مجزا بمنظور تفکیک سیگنال ها و انتقال آنها در تابلو گاورنر نصب شده اند.

1.4 منبع تغذیه: POWER SUPPLY

تغذیه تابلو گاورنر بوسیله دو عدد کنورتر DC/DC تامین میگردد انرژی خروجی از یک کنورتر برای مجموعه گاورنر کافی می باشد و کنورتر شماره 2 کاملا" آزاد می باشد و برای بالا بردن ضریب اطمینان و پایداری شبکه در شرایط غیر عادی در نظر گرفته شده . انرژی مورد نیاز رله های اینتر فیس راه دور و فرمان سیگنال های گاورنر اصلی و پشتیبان از طریق تابلو عمومی کنترل ولتاژ تامین می گردد.

در سیستم منبع تغذیه کنورتر DC/DC سومی بمنظور تامین انرژی مورد نیاز رله های راه دور وجود دارد.

2 . شرح تجهیزات گاورنر DIS CRIPTION OF THE GOVERNOR FUNCTION

2.1 کنترل سرعت: SPEED CONTROL

در کنترل سرعت میزان گشودگی دریچه های متحرک توربین بوسیله گاورنر PIDP که یک گاورنر تناسبی- مشتق گیر و انتگرال گیر دائمی می باشد محاسبه می شود و همچنین مقایسه سرعت تنظیم شده و سرعت عملی را نیز بعهده دارد.

تنظیم گشودگی دریچه های متحرک توربین بوسیله حد دریچه ها (GATE LIMIT) تعیین میگردد. و نباید در محدوده ای که باعث ایجاد خوردگی( CAVITATION ) روی پره های توربین میگردد تنظیم شود . زمانی که دژنکتور ژنراتور قطع می باشد کنترل سرعت بوسیله درصد پائینی از گشودگی دریچه های متحرک توربین صورت میگیرد اصطلاحا" این حالت را بهره برداری بدون بار میگویند ( NO LOAD OPERATION)

در مدار استارت ژنراتور میزان مجاز گشودگی دریچه های متحرک توربین از قبل مشخص و معین شده است و در زمانی که ژنراتور با شبکه پارالل می گردد میزان گشودگی دریچه های متحرک توربین با توجه به ارتفاع دریاچه بستگی به میزان قدرت درخواست شده از ژنراتور دارد. مدار کنترل سرعت ژنراتور را زمانی که به شبکه سراسری وصل است می توان بطریق دستی و یا اتوماتیک فعال نمود. چنانچه بهره برداری مجزا مشاهده شود در هر دو حالت گشودگی دریچه های متحرک توربین فعال نمی گردند.( دستی-اتوماتیک)

در حالت های کنترل گشودگی و کنترل قدرت سوئیچ کنترل سرعت قطع می باشد.

2.1.1 کنترل تنظیم سرعت CONTROL OF SPEED SET POINT

زمانی که گاورنر استارت شود تنظیم سرعت براساس 100% سرعت نامی بطور اتوماتیک انجام می شود و زمانی که کنترل سرعت فعال باشد سرعت بین 90 تا 110 درصد بصورت های زیر کنترل می گردد.

1. توسط سیگنال های ورودی راه دور در صورتیکه کنترل سیستم روی حالت کنترل از دور باشد .


دانلود با لینک مستقیم


تحقیق درباره ی کارون 3 محمدی