یاری فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

یاری فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

یون گیری واکنشی

اختصاصی از یاری فایل یون گیری واکنشی دانلود با لینک مستقیم و پر سرعت .

یون گیری واکنشی


یون گیری واکنشی

یون گیری واکنشی

98 صفحه

مقدمه :

یون گیری واکنشی- PECVD- Ashing- پراکنده کردن مایعات- شیمی پلاسمایی- فیزیک پلاسما- عکس العمل سطوح نسبت به یکدیگر

سخنران: Herbert H.Sawin

پروفسور مهندسی شیمی و مهندسی برق و علوم کامپیوتر از مؤسسه علم و صنعت ماساچوست (MIT)، شهر کمبریج، MA

 

پیشنهادهای فهرست شدة سمینار: July 8-12,2002کمبریج، ماساچوست

  • ارزیابی های سمینار
  • معرفی سمینار
  • طرح کلی سمینار
  • شرح حال و تحقیقات جاری هرب ساوین

زمینه ها و خصوصیات خواسته شده از ثبت


دانلود با لینک مستقیم


یون گیری واکنشی

دانلود مقاله برداشتن یون های Hg ، As و Se از محلولهای صافی سیانور طلایی توسط شناور سازی هوای حل شده

اختصاصی از یاری فایل دانلود مقاله برداشتن یون های Hg ، As و Se از محلولهای صافی سیانور طلایی توسط شناور سازی هوای حل شده دانلود با لینک مستقیم و پر سرعت .

 

 

چکیده :
برداشتن یون های Hg ، As و Se از جریان های عمل آوری گردش سیانوری توسط شناور سازی هوای حل شده (DAF) در مقیاس آزمایشگاهی مطالعه شد. دو متد مختلف بکار گرفته شد. اولی بر مبنای جداسازی بوسیله شناورسازی توده های (AF) شکل گرفته میان یونها و NaDTC (ته نشست) ، LaCL3 یا FeCL3 (منعقد کننده ها) و BuFloc (قلنبه شده) استوار بود. دومی شناورسازی جذب سطحی ذره. (APF) استوار بود، که از مواد مدار جامد برای یونها (Chabazite و La2O3 ) و میکروحباب ها در مرحله جداسازی جامد / مایع استفاده می کرد. نتایج نشان داد که برداشتن در هر دو مورد کارآمد و مؤثر بود و از ترتیب (AF) >APF – Chabazite > APF – La2O3 تبعیت کرد. برداشتن تقریباً کامل (%98<) یونهای فلزی از محلول بدست آمد. بازده پروسه به محلول سیستم و مواد شیمیایی واقع در میان دورو، پدیده متراکم و توده شدن و پارامترهای اجرایی DAF بستگی داشت.
واژه های راهنما – زیست محیطی، کافی های طلایی، شناورسازی سرجوش

 

 

 

مقدمه
حجم های زیادی از سیال های خروجی آبی (آب های پروسه) از عملیات های هیدرومتالوژیکی طلا معمولاً با یون های فلزی سنگینی مثل جیوه، آرسنیک و سلینوم آلوده می شوند. بازیافت این جریان های مسیر سخت گردانی سطح طلا معمولاٌ به نیازی تبدیل می شود و همیشه این کار مستلزم برداشتن یون های فلزی است. این یون ها در پروسه صافی طلا سطح مشترک دارند که مشکلات اقتصادی (اغلب وجود آب یک مسأله محسوب می شود) و زیست محیطی را بوجود می آورند.
متدهای بسیاری برای احیا یا جدا کردن این عناصر پیشنهاد شده است، به عبارتی ته نشست – قلنبه شده [3-1] ، عصاره گیری از محلول [4] ، فیلتراسیون با استفاده از غشاهای میکروامولسیون مایع [6] یا زرین های تبادل یون.
شناورسازی با استفاده از میکروحباب ها برای ته نشست های Hg و As به کار رفته است، در حالی که از Na2S ، سدیم الئات یا KI برای Hg و با جذب سطحی شناورسازی کلوئیدی با استفاده از هیدروکسید دارای ترکیبات آهن به عنوان جامد جذب کننده استفاده می کند.
برداشتن جیوه از جریان های مسیر سیانوردادن طلا ، این موضوع تحقیقات اخیر بوده است چون جیوه کمپلکس های بسیار پایداری را با یون های سیانور تشکیل می دهد و رایج ترین پروسه ها کاربرد پذیری ندارند. در برخی موارد ، کمپلکس های سیانور جیوه با استفاده از Na2S ، Gas و دیگر سولفیدهای غیر آلی و پلی سولفیدها ته نشست می شوند. اخیراً ، با سدیم دی اتیل دی تیو کاربامات پیشنهاد شده است. به دنبال ته نشست ،‌ دی تیوکاربامات های جیوه بعلاوه منعقد کننده ها و قلنبه شدگی ها انباشته شدند. برداشتن ته نشست ها با ته نشین شدن [1،10،11] یا قلنبه شدن [12،3] امکان پذیر بود.
راجع به As و Se ، شرایط نسبتاً مشابه است و جداسازی های شان عمدتاً با ته نشست با هیروکسیدهای دارای ترکیبات آهنی یا آلومینیوم و یونهای سولفید تحقق می یابد. هرچند ،‌در هم رسوبی تریلوژی Hg ، As ، Ae هیچ کاری انجام نشده باشد. این یکی از اهداف کار فعلی را تشکیل می دهد.
تکنولوژی های مختلفی با هدف اصلاح مشکلات وابسته با مقدار قابل توجه آرسنیک آزاد شده به محیط در نتیجه فعالیت های استخراج معدن گسترش یافته است. ته نشست آرسنات های فلزی به طور گسترده بررسی شده است، و جذب سطحی گونه های As بوسیله مواد جامد مختلف به عبارت دیگر ، پیریت، اکسیدهای منگنز، کربن فعال شده و آلومین، زرین های متعدد تبادل یون و خاک رس هم بررسی شده است.
متدهای عمل آوری آرسنیک شامل ته نشست سولفید (سولفید یا سولفید دارای ترکیبات آهنی یا همان فری سولفید) یا تشکیل کمپلکس با فلزات سنگین چند ظرفیتی نظیر یون ترکیبات فلزی و هم رسوبی با هیدروکسید فلز می باشد. این پروسه دوم نمونه ای از پروسه انعقاد یا دلمه شدگی سنتی و متعارف است که در صنعت عمل آوری آب کاربرد دارد. برای کارخانه استخراج کانی طلا ته نشست سولفید برای آرسنات تا حدودی مؤثر یافته شده است ولی برای آرسنیت غیرمؤثر است، و هیچ رسوب شیمیایی ای از عمل آوری سولفید آب اضافی آرسنیت بدست نیامد. از این رو، آرسنیک یکی از دشوارترین عناصر برای برداشتن از محلولهای آبی به شمار می آید، بخصوص برای سطوح پایین مورد نیاز در استانداردهای آب آشامیدنی.
راجع به یون های سلنیوم، سطحی از 0.7mgll در فاضلابهای ذوب مس و عملیات های تصفیه الکترولیت گزارش شده است. Selenite به نظر می رسد متداولترین فرم سلنیوم در فاضلابها غیر از زباله های رنگینه و رنگدانه ای باشد، که حاوی سلنید(مثلا" سلنید کاومیوم زرد) هستند. عمل آوری سوم گزارش شده در این مقاله شامل عمل آوری آهک تاph 11 ، ته نشینی، فیلتراسیون محیط مخلوط ، جذب سطحی کربن فعال شده و کلردار کردن است. برداشتن سلنیت هم با استفاده از سولفات دارای ترکیبات آهنی یا دلمه شدگی زاج سفید(سولفات مضاعف آلمنیوم و پتاسیوم) مطالعه شده است. این عمل آوریها کارایی زیادی نداشتند. عمل آوری برای هر دو منعقد کننده با افزایش دوز منعقد کننده و کاستن PH اصلاح شد. دیگر پروسه های عمل آوری صنعتی فلز با کاربرد رایج ( مثلا" انعقاد آهک، ته نشینی و فیلتراسیون ماسه) در برداشتن سلنیوم نا کارآمد بودند، حداقل به عنوان آنیون شارژ شده منفی. پس به نظر می رسد تبادل یون موثرترین تکنیکی باشد که برایش نتایج واقعی گزارش شده است .
برداشتن یون های فلزی، از سیستم های مایع (جدا سازی جامد/مایع) با شناور سازی از طریق متدها و تکنیک های مختلف غیر ممکن است. شناور سازی یون و جذب سطحی شناور سازی کلوئید اخیرا" برای برداشتن مولیبدنیوم(VI) و آرسننیک (V) از محلول های آبکی رقیق مطالعه شده است. پروسۀ شناورسازی یون از مواد فعال در سطح کاتیونی ( دودسیلامین) به عنوان ککتور استفاده کرد. در جذب سطحی شناور سازی کلوئید هیدروکسید دارای ترکیبات آهنی به عنوان هم رسوب ( ماده جذب کننده ) و سدیم دودسیل سولفات به عنوان ککتور استفاده شدند.
هدف دوم این مقاله گسترش دادن متد ته نشست انعقاد و قلنبه شدگی برای برداشتن hg ، as و se موجود در آب پروسه از مسیر سیانوردار کردن طلا و توصیف در مقیاس آزمایشگاهی برای جداسازی توده های حاصل فلز بوسیله شناورسازی هوای حل شده (DAF) است. دو متد متفاوت استفاده شد: جداسازی بوسیله شناورسازی توده های (AF) تشکیل شده میان یون ها و Nadtc ، Lacl3 ، Buflac ( قلنبه شدۀ آنیونی) و با شناورسازی جذب سطحی ذره (APF) ، با استفاده از مواد خدمت کننده به جامد (La2O3, chabazite) برای یون ها و DAF برای حل کننده بارگیری شده . مبنای شناورسازی جذب سطحی ذره (یا حامل) بالاگیری آنیون یا کاتیون توسط ذرات به راحتی قابل شناورسازی است و شبیه به فعال سازی شناوری اکسید به وسیله یون های فلزی یا کم شدگی سولفید بوسیله آنیون ها می باشد.

 

آزمایش
مقتضیات و واکنش گرها
مواد جذب کننده: توده هایی از Chabazite طبیعی( نوادا- ایالات متحده) نمونه گیری شد ودر کارخانه نورد Tema برای 74 میکرون > %100 گروه بندی شد، و به عنوان جذب کننده و حامل یون فلزی استفاده شد. La2O3، واکنش گر بازرگانی پودری ، به عنوان جذب کننده دوم به کار رفت.
واکنش گرها: NaDTC ، سدیم دی تیوکاربامات، از لابراتوارهای Buck man برای ته نشست کمپلکس های سیانید فلزی استفاده شد؛ درجه تحلیلLaCL3 ازMolycorp Unocal 76 – و FeCL3 از Spectrum chem .MFG Corp به عنوان منعقد کننده و Buflac 606 از Buckman به عنوان قلنبه شدگی استفاده شدند.
در آماده سازی کمپلکس های فلزی %98.7 NaCN (Spectromchem. MFG Corp.) و محلول های استاندارد این سه فلز در %1.8 HNO3 (Fisher Scien Tific) استفاده شد.

 

 

 


متدها
شناورسازی هوایی حل شده، DAF
در پروسه DAF ، حباب های ریز ( حدود O.o1 تا o.1 mm ) با کاهش فشار جریان آبی تشکیل می شود که با هوا در فشار زیاد اشباع شده است (اشباع کننده با ظرفیت 4 لیتر ). Batch ، مقیاس کارگاهی، تستهای DAF با استفاده از سلول شناورسازی 1.5L انجام شد
( شکل 1)
محلول های سنتزی حاوی فلز با استفاده از آب از شرکت Newmont Mining عملیات Hollister ، به عنوان ماتریکس، و محلول های استاندارد As و Se (فیشر) آماده شدند.
Hg در آب Hollister قبلا" (حدود 120ppb .) وجود داشت.
کارایی پروسه با اندازه گیری محتوای باقی مانده فلزات وکدری (واحدهای NTU) در شناورها و با درصدی از جابجایی حدواسط جامد / محلول ارزیابی شد. محلول های شناور پس از شناورسازی توقف 5 دقیقه ای برای Hg و As و Se با استفاده از جذب اتمی (طیف سنج از (Spectraa 200 Varian تحلیل شد .
برای سنجش های میزان کدری، ابرسنج از ابزارالات HF (DRT- 100B) استفاده شد.
زمان شناورسازی، مگر این که غیر از این بیان شود، 1 دقیقه بود. پس از شناورسازی، کسری از شناور از طریق درجه جانبی نمونه گیری شد .
پیش از هر قسمت ، 20 ml از محلول به عنوان شاهد انتخاب شد، در حالی که 980 ml به عنوان حجم نهایی تغذیه برای تست های DAF باقی ماند. با استفاده از این راهکار کلی، دو متد مختلف جداسازی برای فلزات حل شده نتیجه گیری شد . شرایط دیگر در جدول 1 شرح داده می شود.
توده یا تراکم DAF ( AF ، متد1 )
آزمایشات (1،2 در جدول 1) در سلول شناورسازی 30ppml از NaDTC اجرا شد و PH با NaOH یا HCL منظم شد. پس از پایان زمان 3 دقیقه ای ته نشست ، 2ml از محلول gpl 25 از laCL (یا FeCL3) اضافه شد. سرانجام، پس از شرطی کردن برای مدت 5 دقیقه ، حجم های متغیری از پلیمر Bufloc 606 از محلول ppm 320 ، به آهستگی در مدت 30 ثانیه تحت تکان شدید قرار داده شد ( برای توزیع مناسب قلنبه شده ). آن گاه، سیستم به آرامی و ملایمت برای مدت 30 ثانیه دیگر قاطی و تکان داده شد، که برای تشکیل توده پیش از شناورسازی از همزن مغناطیسی استفاده شد.
شناورسازی جذب سطحی ذره- APF (متد2)

 

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله   12 صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید

 


دانلود با لینک مستقیم


دانلود مقاله برداشتن یون های Hg ، As و Se از محلولهای صافی سیانور طلایی توسط شناور سازی هوای حل شده

دانلود مقاله استاندارد روش تعیین یون فلوئور در آب

اختصاصی از یاری فایل دانلود مقاله استاندارد روش تعیین یون فلوئور در آب دانلود با لینک مستقیم و پر سرعت .

 

  1- هدف
هدف از ارائه این استاندارد تشریح چگونگی اندازه‏گیری یون فلوئور در آب به دو روش زیر می‏باشد .
الف - روش فتومتری .
ب - روش الکترود منتخب
2- دامنه کاربرد
در روش " الف " فلوئور موجود در آب به وسیله تقطیر جدا شده و اندازه‏گیری یون فلوئور در چکیده آن به وسیله معرف 1 Spadans انجام پذیرفته که به کمک این روش مقادیر صفر تا 1/4 میلی‏گرم در لیتر (ppM) فلوئور اندازه‏گیری خواهد شد .
در روش " ب " اندازه‏گیری به طور دقیق توسط دستگاه الکترود منتخب انجام میشود که در این روش احتیاجی به تقطیر نبوده زیرا روش انتخاب یونی بر خلاف روشهای رنگ سنجی مورد تاثیر عوامل تداخل کننده قرار نمی‏گیرد و توسط این روش غلظتهای 0/1 تا 1000 میلی‏گرم در لیتر (ppM) اندازه‏گیری می‏شود .
3- خلوص مواد
3-1- مواد شیمیائی به کار رفته باید از نوع خالص شیمیائی برای تجزیه باشد و از سایر مواد شیمیائی در صورتی می‏توان استفاده نمود که قبلا محرز شود ناخالص‏های موجود در هر یک از مواد شیمیائی موجب کاهش در صحت آزمون نخواهد شد .
3-2- آب مضر مصرفی باید از نوع مخصوص مطابق با ویژگیهای آب مضر مصرفی در آزمونهای آب استاندارد شماره 1728 ایران باشد .
4- نمونه برداری
نمونه برداری از آب در آزمونهای روزمره باید مطابق با استاندارد شماره 2348 ایران ( روش روزمره نمونه برداری آب ) و در موارد داوری از استاندارد شماره 2347 ایران ( روش نمونه برداری آب ) استفاده شود .
5- روشهای آزمون
5-1- روش (( الف ))
5-1-1- دامنه کاربرد : این روش در اندازه‏گیری دقیق یون فلوئور در آب به خصوص آبهای دارای مقدار زیاد پس آب به کار رفته و مواردی مانند آبهای شور غلیظ و یا پس آبهای روغنی را شامل نمی‏گردد .
5-1-2- خلاصه روش : فلوئور موجود در آب به صورت اسید ئیدروفلوئور و سیلیسیک تقطیر شده و مقدار آن به وسیله مقدار اثر رنگ بری بر روی رنگ معرف Spadns به طریقه فتومتری اندازه‏گیری می‏شود .
یادآوری : عمل تقطیر را در صورتی می‏توان بدون تأثیر بر روی نتیجه آزمون حذف کرد که مقدار مواد مزاحم کمتر از مقادیر داده شده در جدول شماره یک باشد .
5-1-3- مواد مزاحم : در تقطیر نمونه مواد زیر با مقادیر تجربی داده شده ایجاد تداخل می‏نماید .
الف - آلومینیوم با غلظت بیشتر از lit/mg 300 و دی‏اکسید سیلیس به صورت سیلیس کلوئیدی به مقدار بیشتر از 400 mg/litو دی اکسید سیلیس به صورت سیلیکات به مقدار بیشتر از lit/mg 300 که عمل تشخیص فلوئور را کند می‏نماید .
ب - فلوئور بیشتر از lit/mg 3 که در جدار مبرد شیشه‏ای مستقر می‏شود , علاوه بر کاهش نتیجه در تقطیرهای بعدی در مورد نمونه‏های که دارای فلوئور کمتری می‏باشد تداخل افزایشی دارد بنابراین در چنین مواردی لازم است مبرد را با 300 الی 400 میلی‏لیتر آب مقطر شستشو داده و حاصل را به چکیده تقطیر اضافه و سپس حجم کل را به یک لیتر رسانید . و یا طبق تشخیص آزمون کننده مقدار معین از نمونه را تا 300 میلی‏لیتر رقیق کرد .
ج - کلرور در غلظتهای زیاد مانند آبهای شور و یا آب دریا با غلظتهای بیشتر از lit/mg 2500 باشد در بالن تقطیر ایجاد رسوب می‏نماید که رقیق کردن نمونه بوسیله آب مقطر عاری از فلوئور و کاهش غلظت مواد جامد در کمتر شدن آن مؤثر می‏باشد .
ه - نمونه‏های محتوی مواد روغنی که باعث دو فاز شدن تقطیر می‏شود را برای اندازه‏گیری دقیق فلوئور باید به وسیله حلال مناسب ( مانند اتر , کلرفرم , بنزن و غیره ) استخراج و سپس روی حمام بخار و گرم کردن نمونه , باقیمانده جزئی حلال را نیز خارج کرد .
5-1-4- وسایل مورد نیاز
الف - دستگاه تقطیر : طبق شکل شماره یک بالن این دستگاه باید از نوع شیشه پوروسیلیکات به حجم یک لیتر بوده و دستگاه مجهز به ترمومتر ºC 200 باشد .
ب : فتومتر : اسپکترفتومتر مناسب برای اندازه‏گیری در 570 نانومتر که ضخامت سلول حداقل 1/0 سانتیمتر باشد . و یا فتومتر مجهز به فیلتر سبز - زرد که حداکثر عبور آن بین 550 تا 580 نانومتر و حداقل ضخامت سلول یک سانتیمتر باشد .
5-1-5- مواد مورد نیاز
الف - محلول معرف اسید زیرکونیل – Spadns : حجم مساوی اسید زیرکونیل و محلول Spadns را با هم مخلوط نمائید پایداری این محلول در حدود دو سال می‏باشد .
ب - محلول مبنأ ml 10 محلول Spadns را به 100 میلی‏لیتر آب اضافه و ml 7 اسیدکلرئیدریک ( چگالی 1/19) را تا حجم ml 10 با آب رقیق نموده و به آن بیافزائید .
این محلول پایدار بوده و قابل استفاده مجدد می‏باشد .
ج - سولفات نقره جامد (Ag2SO4)
د - محلول ارسنیت سدیم (2 گرم در لیتر )
ه - محلول استاندارد فلوئورسدیم (0/01mgF ± 1ml) مقدار 0/2210 گرم فلوئورسدیم (NaF) را در آب حل کرده و حجم آنرا به یک لیتر رسانیده و سپس مقدار 100 میلی‏لیتر از این محلول را برداشته و تا یک لیتر رقیق کرده و در شیشه مقاوم در مقابل مواد شیمیائی و یا پلی‏اتیلن نگهداری کنید .
و - محلول Spadns (lit/g 1/916) : مقدار 0/958 گرم معرف Spadns را در آب حل کرده و حجم آنرا به 500 میلی‏لیتر برسانید , این محلول به شرط قرار گرفتن در بطری در بسته و دور از تابش نور پایدار خواهد ماند .
ژ - اسید سولفوریک غلیظ ( با چگالی 1/84)
ح - معرف اسید زیرکونیل (0/266 گرم ZrOCL2, 8H2O در لیتر ):
مقدار 0/133 گرم زیرکونیل کلراید با هشت مولکول آب متبلور را در 25 میلی‏لیتر آب حل کرده و مقدار 350 میلی‏لیتر اسیدکلرئیدریک غلیظ اضافه کرده و سپس به حجم 500 میلی‏لیتر برسانید .
5-1-6- تنظیم مقیاس
الف - با به کار بردن محلول استاندارد فلوئور (0/01 mgF = 1ml) و رقیق کردن آن تا حجم 50 میلی‏لیتر , یک مجموعه محلولهای استاندارد با غلظت معلوم بین 0/00 تا 1/40 میلی‏گرم در لیتر (PPM) تهیه کنید .
محلول استاندارد (ml) مصرفی غلظت حاصل پس از رسیدن به حجم 50ml
محلول استاندارد (ml) مصرفی غلظت حاصل پس از رسیدن به حجم ml 50
ــــــــــــــــــــــــــــــــــــــــــ ــــــــــــــــــــــــــــــــــــــــــــ
F mg 0/01 = ml 1/0 MgF/lit
0/00 0/00
1/00 0/20
2/00 0/40
3/00 0/60
4/00 0/80
5/00 1/00
6/00 1/20
7/00 1/40
ب - در صورتی که نمونه مورد آزمون دارای کلر آزاد باشد , مقدار دو قطره محلول ارسنیت سدیم نیز به هر کدام از محلولهای استاندارد فوق افزوده و سپس مقدار 10/0 میلی‏لیتر معرف اسید زیرکونیل - Spadns اضافه و به خوبی مخلوط نمائید .
برای حصول اطمینان از اختلاط معرف رنگی با نمونه توجه فوق العاده مبذول دارید . فتومتر را برای صفر درصد جذب آماده کرده و با قرائت اعداد مربوطه به محلولهای استاندارد , منحنی جذب را بر حسب غلظت‏های فلوئور ترسیم کنید .
در صورت استفاده از محلولهای جدید معرف Spadns باید این منحنی را دوباره تهیه کرد .
5-1-7- روش کار
الف : تقطیر
1- مقدار 400 میلی‏لیتر آب را در بالن تقطیر ریخته و 200 میلی‏لیتر اسیدسولفوریک غلیظ ( چگالی 1/84) را به آهستگی و در حال هم زدن محلول , به آن اضافه کنید . چند سنگ جوش انداخته و دستگاه را وصل نمائید . بالن را تا 180 درجه سانتیگراد حرارت دهید ( ترجیحا از اجاق برقی استفاده شود ) در این موقع سر ترمومتر باید درون محلول باشد . حاصل تقطیر را دور بریزید . در این نقطه نسبت آب و اسید تنظیم شده است .
2- حرارت مخلوط آب و اسید را تا 100 درجه سانتیگراد کاهش داده و 300 میلی‏لیتر نمونه اضافه کنید و پس از مخلوط کردن , به طریقه فوق تقطیر نمائید تا درجه حرارت مخلوط به 180 درجه سانتیگراد برسد . ( تقطیر در درجه حرارت بیشتر از 180 درجه سانتیگراد مجاز نمی‏باشد .)
یادآوری : چنانچه دمای مخلوط به بالاتر از 180 درجه سانتیگراد برسد . انتقال سولفاتها بسیار زیاد شده و به عنوان یک عامل مزاحم در اندازه‏گیری فلوئور عمل می‏کند .
3- چکیده را در یک ظرف مدرج مناسب جمع‏آوری کنید , و در صورتی که از یک بالن ژوژه به ظرفیت 300ml استفاده شود . می‏توان کاربرد ترمومتر را حذف و تقطیر را پس از رسیدن به حجم 300 میلی‏لیتر متوقف کرد .
4- در صورتی که نمونه محتوی کلر به مقداری باشد که در ادامه آزمون ایجاد مزاحمت نماید . به ازاء هر میلی‏گرم کلر موجود مقدار 5 میلی‏گرم سولفات نقره اضافه کنید .
5- محلول تقطیر نشده آب و اسید موجود در بالن تا زمانی که غلظت مواد در آن به مقادیر داده شده در بند (5-1-3) برسد قابل استفاده مجدد می‏باشد .
ب - تجزیه
1- در صورتی که نمونه دارای کلر آزاد در حد قابل انتظار موجود در آب آشامیدنی باشد , یک قطره محلول ارسنیت شدیم به ازاء هر 0/1 میلی‏گرم کلر موجود به 50 میلی‏لیتر چکیده ( و یا نمونه در صورتیکه از تقطیر استفاده نشود ) افزوده و در انتها دو قطره اضافی نیز بر روی آن بچکانید .
یادآوری : در صورتی که از محلول ارسنیت سدیم استفاده میشود , دو قطره از این محلول را نیز باید به محلولهای استاندارد و مقایسه اضافه کرد .
2- مقدار 50 میلی‏لیتر از نمونه را که غلظت فلوئور در آن کمتر از 0/028 میلی‏گرم است ( در صورت لزوم باید با رقیق کردن نمونه غلظت را به حدود غلظت فوق رسانید ) به داخل یک لوله نسلر و یا مشابه آن انتقال دهید .
مقدار 10/0 میلی‏لیتر مخلوط معرف اسید زیرکونیل - Spadns بر روی آن ریخته و به خوبی مخلوط کنید تا تمام معرف رنگی به خوبی ترکیب شود .
3- درصد جذب نور را نسبت به محلول مقایسه که مقدار جذب آن برابر صفر تنظیم شده است , قرائت کنید .
4- در صورتی که عدد قرائت شده خارج از منحنی قرار گیرد باید آزمون را با مقدار کمتری از نمونه تکرار کرد .
یادآوری : درجه حرارت نمونه و محلولهای استاندارد باید یکسان باشد .
5- در صورت مشکوک بودن به مزاحمت آلومینیوم , با به تأخیر انداختن زمان قرائت به سادگی می‏توان مزاحمت آلومینیوم را حذف کرد .
زمان لازم برابر دو ساعت به ازاء هر lit/mg 3 (ppM) آلومینیوم می‏باشد .
5-1-8- محاسبه
الف - غلظت یون فلوئور در آب بر حسب میلی‏گرم در لیتر از رابطه زیر بدست می‏آید .

که در آن
A = فلوئور اندازه‏گیری شده به طریقه کالریمتری بر حسب mg در لیتر
V =حجم آزمونه به میلی‏لیتر
5-2- روش “ ب “
5-2-1- دامنه کاربرد : این روش مناسب اندازه‏گیری غلظت یون فلوئور در آبهای پالایش شده و اغلب پس آبهای صنعتی است که روش نیازی به تقطیر نداشته باشد و به کمک آن می‏توان غلظتهای یون فلوئور از 0/1 تا 1000 میلی‏گرم در لیتر (ppM) را اندازه‏گیری کرده نمونه‏هائی که مواد جامد محلول در آن بیشتر از 10000 میلی‏گرم در لیتر (ppM) است توسط این روش قابل اندازه‏گیری نمی‏باشد .
5-2-2- خلاصه روش

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله   15 صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید


دانلود با لینک مستقیم


دانلود مقاله استاندارد روش تعیین یون فلوئور در آب