لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 7
روش ژاکوبی برای حل مسائل غیر خطی
روش ژاکوبی در واقع تعمیمی از روش سیمپلکس برای حل مسائل خطی میباشد یا به عبارت دیگر روش ژاکوبی در حالتی خاص همان روش سیمپلکس میباشد.
تئوری روش مشتق مقید(ژاکوبی)
فرض میشود که توابع g, f دو بار پیوستة مشتق پذیر باشند (از ردة C2). ایدة روش ژاکوبی یافتن گوی بسته ای است که در تمام نقاط آن مشتق های جزئی مرتبه اول موجود و شرط g(x)=0 برآورده گردد. همان طور که می دانیم نقاط بحرانی نقاطی اند که مشتقات جزئی تابع در آنها صفر گردد.
برای شناسایی نقاط بحرانی از شرایط کافی به شرح زیر استفاده می کنیم:
شرایط کافی برای نقطة بحرانی جهت اکسترمم بودن آن است که ماتریس هسیان محاسبه شده در نقطه
هنگامی که می نیمم است مثبت باشد .
هنگامی که ماکزیمم است منفی باشد .
برای روشن کردن این مفهوم تابع f(x1 , x2) را در نظر می گیریم. هدف می نیمم کردن تابع با توجه به محدودیت g1(x1 , x2) = x2 - b=0 میباشد. (b ثابت است.) منحنی ایجاد شده توسط سه نقطة C , B , A مقادیری از f را نمایش میدهد که محدودیت اعمال شده همواره برآورده می گردد. روش ژاکوبی، گرادیان f(x1 , x2) را در هر نقطه ای از منحنی ABC تعریف میکند. هر نقطه ای که مشتق آن برابر صفر گردد نشان دهنده یک نقطه بحرانی برای این مسئله مقید میباشد که در شکل زیر نقطة B ، نقطه موردنظر میباشد.
با استفاده از ق تیلور برای نقاط در همسایگی قابل قبول x داریم:
هنگامی که خواهیم داشت:
و از آنجا که g(x)=0 در نتیجه بنابراین خواهیم داشت:
حال یک دستگاه با (n+1) مجهول و (m+1) معادله خواهیم داشت که مجهولاتمان درایههای می باشند با مشخص شدن پیدا میشود. و این بدان معناست که در واقع m معادله با n مجهول داریم. اگر m>n آن گاه حداقل (m-n) معادله زائد می باشند. پس از حذف آنها، سیستم به تعداد کارایی از معادلات مستقل مانند کاهش خواهد یافت. برای حالتی که m=n باشد جواب میباشد و این نشان دهنده آن است که X همسایگی قابل قبول ندارد و فضای حل تنها از یک نقطه تشکیل یافته است. در اینجا این حالت موردنظر نیست و ما به بررسی حالت m < n میپردازیم.
X = ( Y, Z) Y= (y1 , ….ym) & Z= (z1 ,z2 …, zn-m)
متغیرهای مستقل و وابستة بردار X می باشند . حال بردار گرادیان f و g را با توجه به بردارهای Z , Y بازنویسی می کنیم:
تعریف می کنیم: که ماتریس “ژاکوبین” و ماتریس “کنترل” نامیده میشود.
ماتریس J یک ماتریس نامنفرد میباشد چرا که بنا به تعریف m معادلة موجود مستقل میباشند و اجزای بردار Y میتوانند به گونه ای از X انتخاب گردند که J معکوس پذیر گردد.
با استفاده از تعاریف بالا معادلات مطرح شده را مجدداً بازنویسی می کنیم:
(*)
این مجموعه از معادلات از تغییر در (که Z بردار مستقل ما میباشد) اثر می پذیرد.
جایگذاری مقدار به دست آمده در رابطة (*) عبارت زیر را به دست میدهد:
از این معادله، مشتق مقید با توجه به بردار مستقل Z به دست میآید:
که نمایش دهندة گرادیان محدود (مقید) بردار f وابسته به Z میباشد. بنابراین باید در نقاط بحرانی برابر صفر باشد.
شرایط کافی مشابه قسمت قبل میباشد. در این حالت با این وجود ماتریس هسیان مطابق با بردار مستقل Z خواهد بود.
i امین سطر ماتریس هسیان میباشد. توجه کنید که W تابعی از Y و Y تابعی از Z میباشد.
بنابراین گرفتن مشتق جزئی نسبت به Zi با استفاده از قاعدة زنجیری انجام میگیرد.
مثال: در این مثال می خواهیم چگونگی محاسبة در نقاط داده شده با استفاده از فرمول های گفته شده را نشان دهیم. مطلوب است مطالعة تغییرات در همسایگی قابل قبول .
روش ژاکوبی برای حل مسائل غیرخطی (رشته ریاضی کامپیوتر)