یاری فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

یاری فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

جزوه شیمی آلی 1 پروفسور بخشعلی معصومی دانشگاه پیام نور

اختصاصی از یاری فایل جزوه شیمی آلی 1 پروفسور بخشعلی معصومی دانشگاه پیام نور دانلود با لینک مستقیم و پر سرعت .

جزوه شیمی آلی 1 پروفسور بخشعلی معصومی دانشگاه پیام نور


جزوه شیمی آلی 1 پروفسور بخشعلی معصومی دانشگاه پیام نور

این جزوه به صورت پاورپوینت تبدیل شده به pdf است.

این جزوه درس شیمی آلی 1 پروفسور بخشعلی معصومی دانشگاه پیام نور می باشد که به طور کامل به ارائه مباحث مطرح در این واحد درسی پرداخته است.

درس شیمی آلی از جمله دروس اصلی رشته شیمی در مقطع کارشناسی می باشد. این جزوه در 314 اسلاید بوده و امیدواریم در جهت کمک به شما عزیزان مورد استفاده قرار بگیرد.


دانلود با لینک مستقیم


جزوه شیمی آلی 1 پروفسور بخشعلی معصومی دانشگاه پیام نور

شیمی آلی

اختصاصی از یاری فایل شیمی آلی دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 22

 

شیمی آلی

تاریخچه

واژه غلط انداز " آلی " باقیمانده از روزگاری است که ترکیبهای شیمیایی را ، بسته به این که از چه محلی منشاء گرفته باشند، به دو طبقه غیر آلی و آلی تقسیم می‌کردند. ترکیبهای غیر آلی ، ترکیبهایی بودند که از مواد معدنی بدست می‌آمدند. ترکیبات آلی ، ترکیبهایی بودند که از منابع گیاهی یا حیوانی ، یعنی از مواد تولید شده به وسیله ارگانیسمهای زنده بدست می‌آمدند.

در حقیقت تا حدود سال 1950، بسیاری از شیمیدانها تصور می‌کردند که ترکیبات آلی باید در ارگانیسم های زنده بوجود آیند و در نتیجه ، هرگز نمی‌توان آنها را از مواد غیر آلی تهیه کرد. ترکیبهایی که از منابع آلی بدست می آمدند، یک چیز مشترک داشتند: همه آنها دارای عنصر کربن بودند. حتی بعد از آن که روشن شد این ترکیبها الزاما نباید از منابع زنده به دست آیند، بلکه می‌توان آنها را در آزمایشگاه نیز تهیه کرد.

بهتر آن دیدند که برای توصیف آنها و ترکیبهایی مانند آنها ، همچنان از واژه آلی استفاده کنند. تقسیم ترکیبها به غیر آلی و آلی تا به امروز همچنان محفوظ مانده است.

منابع مواد آلی

امروزه گرچه هنوز مناسب‌تر است که بعضی از ترکیبهای کربن را از منابع گیاهی و حیوانی استخراج کنند، ولی بیشتر آنها را می‌سازند. این ترکیبها را گاهی از اجسام غیر آلی مانند کربناتها و سیانیدها می‌سازند، ولی اغلب آنها را از سایر ترکیبهای آلی بدست می‌آورند. دو منبع بزرگ مواد آلی وجود دارد که ترکیبهای آلی ساده از آن بدست می‌آیند:

نفت و زغال سنگ؛ (هر دو منبع به معنی قدیمی خود ، آلی‌اند، زیرا فرآورده های تجزیه و فساد گیاهان و جانوران به شمار می آیند).

این ترکیبهای ساده بعنوان مواد ساختمانی اولیه مورد استفاده قرار می‌گیرند و با کمک آنها می‌توان ترکیبهایی بزرگتر و پیچیده‌تر را تهیه کرد. با نفت و زغال سنگ بعنوان سوختهای فسیلی ، باقیمانده از هزاران سال و تجدید نشدنی ، آشنا هستیم. این منابع ، بویژه نفت ، بمنظور تامین نیازهای پیوسته رو به افزایش ما به انرژی ، با سرعتی نگران‌کننده مصرف می‌شوند.

امروزه ، کمتر از ده درصد نفت مصرفی در تهیه مواد شیمیایی ، بکار گرفته می‌شود. بیشتر آن برای تامین انرژی بسادگی سوزانده می‌شود. خوشبختانه ، منابع دیگر انرژی ، مانند خورشیدی ، زمین گرمایی ، باد ، امواج ، جزر و مد ، انرژی هسته‌ای نیز وجود دارد.

زیست توده

چگونه و در کجا می‌توانیم منبع دیگری از مواد اولیه آلی پیدا کنیم؛ بی شک باید به جایی روی آوریم که مبدا اولیه سوختهای فسیلی است، یعنی زیست توده biomass ، ولی این بار بطور مستقیم و بدون دخالت هزاران سال. زیست توده ، تجدید شدنی است، براحتی مورد استفاده قرار می‌گیرد و می‌تواند تا موقعی که بر روی این سیاره زندگی می‌کنیم، تداوم داشته باشد.

در ضمن عقیده بر این است که نفت خیلی گرانبهاتر از آن است که سوزانده شود.

ویژگی ترکیبات کربن

براستی چه ویژگی خاصی در ترکیبهای کربن وجود دارد که لازم است آنها را از ترکیبهای یکصد و چند عنصر دیگر جدول تناوبی جدا کنیم؟ دست کم ، بخشی از پاسخ چنین است: ترکیبهای بسیار زیادی از کربن وجود دارد و مولکول آنها می‌تواند بسیار بزرگ و بسیار پیچیده باشد. شمار ترکیبهای کربن‌دار ، چندین برابر ترکیبهایی است که کربن ندارند. این ترکیبهای آلی را به خانواده هایی تقسیم می‌کنند که معمولا در ترکیبهای غیرآلی ، همانندی برایشان وجود ندارد.

بعضی از مولکولهای شناخته شده آلی ، هزاران اتم دارند و آرایش اتمها در مولکولهای نسبتا کوچک ممکن است بسیار پیچیده باشد. یکی از دشواریهای اساسی شیمی آلی ، یافتن چگونگی آرایش اتمها در مولکولها ، یعنی تعیین ساختار این ترکیبهاست.

 

واکنشها در شیمی آلی

راههای زیادی برای خرد کردن مولکولهای پیچیده یا نوآرایی آنها بمنظور تشکیل مولکولهای تازه وجود دارد. راههای زیادی برای افزودن اتمهای دیگر به این مولکولها یا جانشین کردن اتمهای تازه به جای اتمهای پیشین وجود دارد. بخشی ار شیمی آلی صرف دانستن این مطلب می‌شود که این واکنشها چه واکنشهایی هستند، چگونه انجام می‌شوند و چگونه می‌توان از آنها در سنتز ترکیبهای مورد نیاز استفاده کرد.

گستره اتصال اتمهای کربن در ترکیبات کربن

اتمهای کربن می‌توانند به یکدیگر متصل شوند. گستره اتصال آنها به هم ، به اندازه‌ای است که برای اتمهای هیچ یک از عناصر دیگر ممکن نیست. اتمهای کربن می‌توانند زنجیرهایی به طول هزارها اتم ، یا حلقه‌هایی با ابعاد گوناگون تشکیل دهند. این زنجیرها ممکن است شاخه‌دار و دارای پیوندهای عرضی باشند. به اتمهای کربن در این زنجیرها و حلقه ها ، اتمهای دیگری بویژه هیدروژن ، همچنین فلوئور ، کلر ، برم ، ید ، اکسیژن ، نیتروژن ، گوگرد ، فسفر و سایر اتمها متصل می‌شوند. سلولز ، کلروفیل و اکسی توسین مثالهایی از این دستند.

هر آرایش متفاوتی از اتمها با یک ترکیب معین تطبیق می‌کند و هر ترکیب دارای مجموعه ای از ویژگیهای شیمیایی و فیزیکی مخصوص به خود است. شگفت‌انگیز نیست که امروزه بیش از ده میلیون ترکیب کربن می‌شناسیم و این که بر این تعداد ، همه ساله نیم میلیون افزوده می‌شود. همچنین شگفت انگیز نیست که مطالعه و بررسی شیمی آنها به تخصصی ویژه نیاز دارد.

تکنولوژی و شیمی آلی

شیمی آلی ، زمینه‌ای است که از دیدگاه تکنولوژی اهمیتی فوق‌العاده دارد. شیمی آلی شیمی رنگ و دارو ، کاغذ و مرکب ، رنگینه ها و پلاستیکها ، بنزین و لاستیک چرخ است. شیمی آلی ، شیمی غذایی است که می‌خوریم و لباسی است که می‌پوشیم.

زیست شناسی و شیمی آلی

شیمی آلی در زیست شناسی و پزشکی نقش اساسی برعهده دارد. گذشته از آن ، ارگانیسم های زنده ، بیشتر از ترکیبهای آلی ساخته شده اند. مولکولهای "زیست شناسی مولکولی" همان مولکولهای آلی هستند. زیست شناسی در سطح مولکولی ، همان شیمی آلی است.


دانلود با لینک مستقیم


شیمی آلی

تحقیق درمورد بعضی از ترکیبهای آلی

اختصاصی از یاری فایل تحقیق درمورد بعضی از ترکیبهای آلی دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 13

 

 

ساختار متان

هر یک از چهار اتم هیدروژن بوسیله پیوند کووالانسی ، یعنی با یک جفت الکترون اشتراکی به اتم کربن متصل شده است. وقتی کربن به چهار اتم دیگر متصل باشد، اوربیتالهای پیوندی آن (اوربیتالهای sp3 که از اختلاط یک اوربیتال s و سه اوربیتال p تشکیل شده‌اند) ، به سوی گوشه‌های چهار وجهی جهت گیری کرده‌اند.این آرایش چهار وجهی ، آرایشی است که به اوربیتالها اجازه می‌دهد تا سر حد امکان از یکدیگر فاصله بگیرند. برای اینکه همپوشانی این اوربیتالها با اوربیتال کروی اتم هیدروژن به گونه ای موثر صورت پذیرد و در نتیجه ، پیوند محکم‌تری تشکیل شود، هر هسته هیدروژن باید در یک گوشه این چهار وجهی قرار بگیرد.ساختار چهار وجهی متان بوسیله پراش الکترونی که آرایش اتمها را در این نوع مولکولهای ساده به روشنی نشان می‌دهد، تایید شده است. بعد شواهدی که شیمیدانها را خیلی پیش از پیدایش مکانیک کوانتومی REDIRECT (نام صفحه) یا پراش الکترونی d ، به پذیرش این ساختار چهار وجهی رهنمون شد، بررسی خواهیم کرد.ما به طور معمول ، متان را با یک خط کوتاه برای نمایش هر جفت الکترون مشترک بین کربن و هیدروژن نشان خواهیم داد. برای آنکه توجه خود را بر روی الکترونها بطور انفرادی متمرکز کنیم، گاهی ممکن است یک جفت الکترون را بوسیله یک جفت نقطه نشان دهیم. سرانجام ، وقتی بخواهیم شکل واقعی مولکول را نمایش دهیم، از فرمولهای سه بعدی استفاده می‌کنیم.

خواص فیزیکی متان

واحد ساختار این ترکیب غیر یونی ، مولکول است، چه جامد باشد، چه مایع و چه گاز. به علت اینکه مولکول متان بسیار متقارن است، قطبیتهای انفرادی پیوندهای کربن – هیدروژن ، یکدیگر را خنثی می‌کنند، در نتیجه کل مولکول غیر قطبی است. نیروهای جاذبه موجود میان این مولکولها غیر قطبی، به نیروهای واندروالسی محدود می‌شوند؛این نیروهای جاذبه ، در مورد این مولکولهای کوچک ، باید در مقایه با نیروهای قدرتمند موجود بین مثلا یونهای سدیم و کلرید ضعیف باشند. بنابراین ، از اینکه به آسانی می‌توان بوسیله انرژی گرمایی ، بر این نیروهای جاذبه فایق آمد، بطوری‌که ذوب شدن و جوشیدن در دمای پایین صورت بگیرد، تعجب نخواهیم کرد: دمای ذوب در 183- درجه سانتی‌گراد و دمای جوش در 161,5- درجه سانتی‌گراد قرار دارد. (این مقادیر را با مقادیر مربوط در مورد سدیم کلرید: یعنی دمای ذوب 801 درجه سانتی‌گراد و دمای جوش 1413درجه سانتی‌گراد مقایسه کنید.) در نتیجه ، متان در دماهای معمولی یک گاز است.متان ، بی‌رنگ است و وقتی مایع شود، سبکتر از آب است (چگالی نسبی آن 0,4 است). موافق با قاعده تجربی که می‌گوید: «هم‌جنس در هم‌جنس حل می‌شود» ، متان فقط کمی در آب انحلال پذیر است، ولی در مایعات آلی مانند بنزین ، اتر و الکل بسیار حل می‌شود. از نظر خواص فیزیکی ، متان الگویی برای سایر اعضا خانواده آلکانهاست.

منبع متان

متان ، فرآورده پایانی تجزیه غیر هوازی (بدون هوا) گیاهان ، یعنی شکستن بعضی از مولکولهای بسیار پیچیده است. همچنین یکی از اجزاء اصلی (بیش از 97%) گاز طبیعی است. متان همان گاز قابل احتراق و منفجر شونده معادن زغال سنگ است و می‌توان خروج حبابهای آن را به عنوان گاز مرداب در سطح مردابها مشاهده کرد. اگر متان بسیار خالص لازم داشته باشیم، می‌توان آن را بوسیله تقطیر جزء به جزء از سایر اجزاء تشکیل دهنده گاز طبیعی (که بیشتر آلکانها هستند) جدا کرد.البته بیشتر گاز طبیعی ، بدون خالص سازی ، به عنوان سوخت مصرف می‌شود.

ساختار اتان

از نظر اندازه C2H6 بعد از متان قرار می‌گیرد. اگر اتمهای این مولکول را با رعایت قاعده ای که می‌گوید برای هیدروژن یک پیوند (یک جفت الکترون) و برای کربن ، چهار پیوند (چهاز جفت الکترون) ، بوسیله پیوندهای کووالانسی به یکدیگر متصل کنیم، به ساختار زیر دست می‌یابیم: CH3-CH3.هر کربن به سه هیدروژن و یک کربن دیگر متصل است و چون هر اتم به چهار اتم دیگر متصل است، اوربیتالهای


دانلود با لینک مستقیم


تحقیق درمورد بعضی از ترکیبهای آلی

تجزیه کیفی مواد آلی به روش ذوب قلیایی جهت تشخیص ازت

اختصاصی از یاری فایل تجزیه کیفی مواد آلی به روش ذوب قلیایی جهت تشخیص ازت دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 10

 

تجزیه کیفی مواد آلی به روش ذوب قلیایی جهت تشخیص ازت، گوگرد و هالوژنها :

برای تشخیص این عناصر در ترکیبات آلی ابتدا باید آنها را به ترکیبات معدنی یونیزه تبدیل کرد سپس شناسایی نمود. این تبدیل ممکن است به روشهای مختلف صورت گیرد ولی بهترین روش ذوب ترکیبات با فلز سدیم است. در این روش سیانید سدیم (NaCN)، سولفید سدیم (Na2S) و هالید سدیم (NaX) تشکیل میشود که به آسانی قابل تشخیص هستند.

 

ترکیب آلی (1)

معمولا سدیم به مقدار اضافی به کار برده میشود. در غیر اینصورت اگر گوگرد و نیتروژن هردو وجود داشته باشند، احتمالا تیوسیانات سدیم (NaSCN) تشکیل میشود. در این صورت در تشخیص نیتروژن به جای آبی پروس رنگ قرمز مشاهده میشود زیرا بجای یون (CN-)، یون (SCN-) خواهیم داشت. اما با سدیم اضافی تیوسیانات تشکیل شده تجزیه میشود و جواب درست به دست می آید.

 

به مخلوط حاصل آب اضافه کرده مخلوط قلیایی را صاف نموده و سپس به آن (FeSO4) اضافه کنید در این صورت فروسیانید سدیم تشکیل میشود.

 

وقتی محلولهای قلیایی نمکهای فروی بالا جوشانده میشود بر اثر اکسیژن هوا کمی یون فریک تشکیل میشود. (بر اثر سولفوریک اسید رقیق هیدروکسیدهای فرو و فریک تشکیل شده حل میشوند) فروسیانیدها با نمک فریک تشکیل فروسیانید فریک (آبی پروس) میدهند.

 

برای اسیدی کردن محیط نباید از (HCl) استفاده کرد زیرا به علت تشکیل (FeCl6) رنگ زرد در محیط ایجاد میشود و به جای آبی پروس رنگ سبز ظاهر میشود. به همین دلیل کلرید فریک نیز نباید اضافه شود.

همانطوری که قبلا ذکر شده است بر اثر اکسیداسیون به وسیله هوا در محیطهای قلیایی گرم به مقدار کافی یونهای فریک تشکیل میشود بنابراین نیازی به افزایش یون فریک نیست، افزایش مقدار کمی محلول رقیق فلئورید پتاسیم ممکن است به تشکیل آبی پروس در محلول که به آسانی قابل صاف شدن است کمک نماید (Fe3+ با F- تولید FeF63- میکند که پایدار است و باعث خارج شدن Fe3+ از محیط عمل میشود).

گوگرد به صورت یون سولفید را میتوان به وسیله استات سرب و استیک اسید و یا به و سیله پلمبیت سدیم (محلول قلیایی استات سرب) به صورت رسوب سولفید سرب (PbS) سیاه رنگ تشخیص داد.

 

برای تشخیص یونهای هالوژن (Cl, Br, I) از اثر محلول نیترات نقره در محیط اسید نیتریکی استفاده میشود در این صورت هالید نقره به صورت رسوب حاصل میشود.

بخش عملی

ذوب قلیایی

(احتیاط: به هنگام کار عینک محافظ فراموش نشود) در یک لوله آزمایش کاملا خشک (حدود 150 در 12 میلیمتر غیر پیرکس) یک تکه سدیم کوچک تمیز به ابعاد تقریبی 4 میلیمتر بیندازید (سدیم را به وسیله کاردک تمیز و خشک بردارید) و لوله را با گیره بگیرید و ته لوله را با شعله کوتاه به ملایمت حرارت دهید تا سدیم در داخل لوله ذوب شده و به صورت دود سفید در آید و بخارات تا ارتفاع حدود 2 سانتی متر بالا رود، سپس لوله را از شعله دور کرده و به آن چند ذره جسم جامد (حدود 20 میلی گرم) یا حدود سه قطره مایع مورد آزمایش (ترجیحا طی چند نوبت) طوری اضافه کنید که مستقیما در ته لوله و بر روی دود سفید سدیم ریخته شود (دقت کنید ممکن است انفجار کوچکی رخ دهد بنابر این این آزمایش را حتما زیر هود و تحت نظر مربی آزمایشگاه انجام دهید) و بعد بتدریج لوله را تا سرخ شدن گرم کنید (احتیاط: موقع حرارت دادن، دهانه لوله را به طرف خود یا فرد دیگری نگیرید) سپس لوله داغ را داخل یک بشر کوچک حاوی 10 میلی لیتر آب مقطر وارد کنید تا بشکند. مخلوط را تا جوش حرارت داده و سپس صاف کنید محلول صاف شده باید زلال و قلیایی باشد. در صورتیکه تیره باشد، احتمالا تجزیه ناقص بوده و ذوب قلیایی باید دوباره تکرار شود.

روش دیگر استفاده از لوله آزمایش پیرکس است. در این روش مطابق بالا عمل کنید اما پس از ذوب قلیایی اجازه دهید لوله سرد شود و سپس 3 الی 4 میلی لیتر متانول به آن اضافه کنید تا سدیم اضافی را تجزیه کند سپس بر روی آن آب مقطر بریزید تا نصف لوله پر شود و برای چند دقیقه به ملایمت بجوشانید. سپس مخلوط را صاف نموده و بر روی محلول آزمایشات زیر را انجام دهید.

شناسایی ازت

حدود 1 میلی لیتر محلول صاف شده را در یک لوله آزمایش ریخته و به آن کمی سولفات فرو اضافه کنید و محلول را به آرامی و همراه با تکان دادن تا نقطه جوش حرارت دهید و سپس بدون سرد نمودن محلول را با اسید سولفوریک رقیق اسیدی کنید. رسوب یا رنگ آبی پروس دلیل بر وجود نیتروژن است. افزودن 1 میلی لیتر محلول 5% فلوئورید پتاسیم برای تشکیل آبی پروس مفید است.

شناسایی گوگرد

الف) استفاده از استات سرب: در حدود 1 میلی لیتر محلول زیر صافی را در یک لوله آزمایش ریخته و با استیک اسید، اسیدی کنید. حال به محلول حاصل چند قطره استات سرب اضافه کنید. ایجاد رسوب سیاه رنگ سولفید سرب دلیل بر وجود گوگرد در ماده آلی است.

ب) استفاده از پلمبیت سدیم: ابتدا محلول پلمبیت سدیم را به این صورت تهیه کنید. به چند قطره محلول استات یا نیترات سرب قطره قطره محلول سود 10% اضافه کنید تا ابتدا رسوب سفید تشکیل شده سپس در زیادی


دانلود با لینک مستقیم


تجزیه کیفی مواد آلی به روش ذوب قلیایی جهت تشخیص ازت

دانلود مقاله کامل درباره نقش فسفر در کشاورزی نقش مواد آلی در کشاورزی پایدار 48 ص

اختصاصی از یاری فایل دانلود مقاله کامل درباره نقش فسفر در کشاورزی نقش مواد آلی در کشاورزی پایدار 48 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 48

 

 

واحد گرگان

عنوان:

نقش فسفر در کشاورزی

نقش مواد آلی در کشاورزی پایدار

استاد:

سرکار خانم عربی

دانشجویان:

نوراله پقه ـ عبدالستار ایزدی

طه مرتضوی ـ امیر ایوبی

تابستان 87

مقدمه

فسفر یک عنصر شیمیایی جدول تناوبی است که نماد آن P و عدد اتمی آن 15 میباشد. فسفر یکی از نافلزات چند ظرفیتی گروه نیتروژن بوده و معمولا در سخره‌ها و کانی های فسفاتی و همچنین در تمام سلولهای زنده یافت میشود ولی هیچگاه به صورت طبیعی تنها و بدون ترکیب با عناصر دیگر وجود ندارد. فسفر بسیار واکنش پذیر بوده و هنگام ترکیب با اکسیژن نور کمی از خود ساتع میکند. از عناصر لازم و حیاتی ارگان های زنده بوده و نامش به شکلهای گوناگون ذکر میشود. مهمترین استفاده فسفر در تولید کود میباشد. همچنین در تولید مواد منفجره کبریت آتش بازی مواد حشره کش خمیر دندان و مواد شوینده و همچنین مانیتورهای کامپیوتر نیز کاربرد دارد.

خصوصیات قابل توجه

فسفر معمولا به شکل یک ماده جامد و موم مانند سفید رنگ است که بوی نامطبوعی دارد. فسفر خالص بی رنگ و شفاف است. اگرچه این نافلز در آب قابل حل نیست ولی در دی سولفید کربن حل میشود. فسفر خالص به سرعت در هوا میسوزد و تبدیل به پنتا اکسید فسفر میشود.

گونه‌ها

فسفر به چهار پنج شکل مختلف وجود دارد. سفید (یا زرد) قرمز سیاه (یا بنفش). که متداول ترین آنها فسفر قرمز و سفید میباشند که که هر دوی آنان از گروه چهار اتمی های چهار وجهی میباشند. فسفر سفید در تماس با هوا میسوزد و در مجاورت با گرما یا نور به فسفر قرمز تبدیل میشود که دو حالت آفا و بتا دارد که با انتقال دمای -3.8 درجه سانتیگراد از هم تفکیک میشوند. در عوض فسفر قرمز پایدار تر بوده و در فشار بخار 1 اتمسفر در 17 درجه سانتیگراد تصعید می شود و از تماس و یا گرمای مالشی میسوزد. فسفر سیاه چندشکلی Allotrope هم در ساختاری مشابه گرافیت که در آن اتمها در یک صفحه شش وجهی چیده شده و هادی جریان الکتریسیته هستند وجود دارد.

کاربردها

اسید فسفریک غلیظ شده که 70% تا 75% P2O))5 دارد. در(( کشاورزی و تولید کود بسیار مهم میباشد. در نیمه دوم قرن بیستم نیاز بیشتر به کودها تولیدات فسفری را به مقدار قابل توجهی افزایش داد.

دیگر کاربردهای فسفر عبارتند از:

• فسفر برای تولید شیشه مخصوص برای لامپهای سودیومی استفاده میشود.

• فسفات کلسیم یا Bone-Ash برای تولید ظروف چینی مرغوب و Mono_calcium Phosphate که در بکینگ پودر مصرف دارد استفاده میشود.

• همچنیند این عنصر در تولید فلزات برنز فسفات و دیگر فلزات استیل کاربرد دارد.

• تری سدیوم فسفات در ماده های تصفیه کننده برای شیرین کردن آب و همچنین جلوگیری از فرسایش لوله‌ها کاربرد دارد.

• از فسفر سفید در ساخت بمبهای آتش زا و دود زا و گلوله های رسام استفاده میشود.

• فسفر کاربردهای گوناگون دیگری در ساخت کبریتهای بی خطر مواد آتش زا حشره کش‌ها خمیردندان‌ها و مواد پاک کننده دارد.

نقش بیولوژیکی

ترکیبات فسفری نقش حیاتی در تمام گونه های حیات شناخته شده در زمین دارد. فسفرهای معدنی نقش کلیدی در ملوکولهای بیولوژیکی مانند DNA و RNA که قسمتی از استقامتهای ملوکولی را شکل میدهند بازی میکنند. همچنین سلولهای زنده از فسفرهای معدنی برای ذکیره و انتقال انرژی سلولی از طریق تری فسفات آدنوزین ATP استفاده میکنند. نمکهای فسفات کلیسیوم هم توسط حیوانات برای سفت شدن استخوان استفاده میشود. ضمناً فسفر یک عضو حیاتی برای پروتوپلاسمهای سلولی و بافتهای عصبی میباشد.

تاریخچه

فسفر (که یونانی آن فسفروس به معنای"حامل روشنایی" و از نامهای باستانی سیاره زهره میباشد ) در سال 1669 توسط شیمیدان آلمانی Henning Brand در حین تولید یک دارو از ادرار کشف شد. براند با تبخیر ادرار سعی در تقطیر نمک داشت که در این فرایند ماده سفید رنگی تولید شد که در تاریکی میدرخشید و با نور زیادی میسوخت. از آن روز تابندگی فسفری برای شرح اشیاءی که در شب بدون سوختن میدرخشند بکار برده شد.

کبریتهای اولیه که از فسفر سفید در ترکیباتشان اسفاده میشد به دلیل سمی بودن خطرناک بودند و استفاده از آنها موجبات قتل و خودکشی و.... را فراهم میکرد. (یک داستان نا معلوم حکایت از این دارد که زنی با اضافه کردن فسفر سفید به غذای شوهرش قصد کشتن وی را داشت که هنگام جوشانیدن غذا به دلیل به وجود آمد بخار نورانی لو رفت.)

همچنین کارگران کبریت ساز به دلیل مجاورت با بخار آن دچار مردگی استخوانهای فک میشدند. زمانی که فسفر قرمز که خاصیت آتش زایی و سمی به مراتب کمتری را دارد کشف شد جایگزین فسفر سفید در صنعت کبریت سازی گردید.

پیدایش

فسفر به دلیل واکنش پذیری در هوا و دیگر مواد حاوی اکسیژن به تنهایی در طبیعت یافت نمیشود ولی به صورت ترکیبی به مقدار زیادی در معادن گوناگون پخش شده اند. که بزرگترین این معادن در روسیه مراکش فلوریدا Idaho, Tennesse و Utah قرار دارد.


دانلود با لینک مستقیم


دانلود مقاله کامل درباره نقش فسفر در کشاورزی نقش مواد آلی در کشاورزی پایدار 48 ص