یاری فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

یاری فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

تحقیق درباره تدابیر ایمنی فنی هنگام قطع کامل ولتاژ و یا قطع قسمتی از ان 14 ص

اختصاصی از یاری فایل تحقیق درباره تدابیر ایمنی فنی هنگام قطع کامل ولتاژ و یا قطع قسمتی از ان 14 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 14

 

تدابیر ایمنی فنی هنگام قطع کامل ولتاژ و یا قطع قسمتی از ان

1 – جهت آماده نمودن محل کار هنگام کار با قطع کامل ولتاژ و یا قطع قسمتی از آن بایستی تدابیر فنی زیر را اتخاذ نمود .

الف ) قطع دستگاههای الکتریکی و اتخاذ تدابیری که مانع رساندن ولتاژ( در نتیجه راه اندازی اتوماتیک یا اشتباهی تجهیزات ) به محل کار گردد .

ب ) نصب تابلوهای اخباری

ج ) کنترل منظور حصول اطمینان از نبود ولتاژ در قسمتهای حامل جریان که اتصال زمین روی آنها باید انجام گیرد .

د ) نصب اتصال زمین بالافاصله پس از کنترل و اطمینان از نبود ولتاژ

ه ) محصور نمودن بقیه مناطقی که تحت ولتاژ قرار دارند بستگی به شرایط محلی دارد و می تواند پیش و یا پس از نصب اتصال زمینها انجام گیرد .

2 – در محل کار قمستهای حامل جریانی که روی انها کار انجام نمی شود و هنگام اجرای کار امکان تماس یا اتصال اتفاقی با آنها وجود دارد بایستی بدون برق باشند .

3 – اگر قسمتهای حامل جیان را که تماس یا اتصال با آنها امکان پذیر است نتوان بی برق نمود . در آن صورت بایستی آنان را محصور ساخت . حصارها را باید از مواد عایقی ساخت .

ضرورت و طریقه نصب حصارهای موقتی بستگی به شرایط محل و نحوه کار دارد که توسط مسئول آماده کردن محل کار و سرپرست مسئول تعیین می گردد . نصب حصارها باید با احتیاط کامل در حضور سرپرست مسئول کار انجام پذیرد .حد فاصل مجاز جهت نزدیک شدن به قسمتهای برق دار در نصب حصارها نیز بایستی رعایت گردد نباید کمتر از ارقام زیر باشد .

برای ولتاژ تا 12 کیلو ولت

6/2 متر

برای ولتاژ تا 24 کیلو ولت

8/2 متر

برای ولتاژ تا 36 کیلو ولت

9/2 متر

برای ولتاژ تا 72 کیلو ولت

3 متر

برای ولتاژ تا 100 کیلو ولت

46/3 متر

برای ولتاژ تا 145 کیلو ولت

5/3 متر

برای ولتاژ تا 245 کیلو ولت

5/4 متر

برای ولتاژ تا 300 کیلو ولت

8/4 متر

برای ولتاژ تا 362 کیلو ولت

25/5 متر

برای ولتاژ تا 420 کیلو ولت

5/5 متر

برای ولتاژ تا 525 کیلو ولت

5/7 متر

4 – قطع ولتاژ جهت اجرای کار بایستی طوری صورت پذیرد که قسمتهای بی برق شده دستگاه الکتریکی از هر طرف از قسمتهای تحت ولتاژ جدا باشد . در این صورت قطع ارتباط از هر طرف باید قابل رویت باشد . قطع ارتباط ممکن است بوسیله سکسیونر و یا دژنکتور به وسیله برداشتن فیوزها قطع کردن یا برداشتن شین ها یا سیم ها انجام شود .

5 – به منظور احتراز از روشن شدن اتوماتیک یا اشتباهی موتور سکسیونرها یا دژنکتورها که به وسیله آنها امکان رساندن برق به محل کار وجود دارد همیشه باید آنان را به وسیله قفل یا اینترلاک مکانیکی در وضعیت قطع قرار داد .

6 – به مظور جلوگیری از رساندن برق به محل کار در اثر القاء باید تمام ترانسفورماتورهای قدرت ، اندازه گیری و غیره که با تجهیزات برقی آماده برای تعمیر و راه انداز ارتباط دارند هم از طرف فشار قوی و متوسط و هم از طرف فشار ضعیف قطع گردند .

7 – انجام کار روی تجهیزاتی که فقط به وسیله سیکسونر یا دژنکتور ( دارای موتور اتوماتیک قطع و وصل ) از قسمتهای برقدار جدا شده اند ممنوع می باشد .

8- در ایستگاههای با ولتاژ تا 1000 ولت قسمتهای برقدار را که امکان تماس یا اتصال اتفاقی با آنها موجود است . در صورت ضرورت کار می توان قطع ننمود به شرطی که به وسیله عایق قابل اطمینان محصور شده باشند .

آویختن تابلوهای اخباری و بازدارنده و نصب حصارها :

9 – دستگاههای برق مجاور که دارای حصارهای دائمی نیست و همچنین دارای راههایی است که عبور از آنها برای پرسنل امکان پذیرمی باشد باید به وسیله حصارهای سیار محصور گردند .

حصارهای سیار باید چنان نصب گردند که هنگام بروز خطر مانعی برای خروج پرسنل از ساختمان بوجود نیاورند .

10 – قسمتهای برقدار که امکان تماس اتفاقی با آنها وجود دارد هنگام کار اجرایی باید به وسیله ورقه هایی لاستیکی و غیره عایق شده باشند . نصب و برداشتن چنین حصارهایی باید با احتیاط کامل تحت نظر شخص دومی انجام پذیرد .

11 – روی حصارهای دائمی دستگاههای برق که در مجاورت محل کار قرار دارند و همچنین روی حصارهی موقتی باید تابلوهای (ایست خطر مرگ) ( برای دستگاههای برق با ولتاژ تا 100 ولت ) و (ایست ، ولتاژ قوی ) ( برای دستگاههای با ولتاژ بیش از 1000 ولت ) را آویزان نمود .

12 – روی کلیدهای فرمان ، موتور سکسیونرها و دژنکتورها و دیکر تجهیزات و وسائلی که به وسیله آنها امکان برق رسانی به محل می باشد تابلوی (روشن نکنید – کارگران مشغول کار می باشند ) را باید آویزان کرد .

13 – هنگام کار روی خط ، روی موتور سکسیونر خط باید تابلوی ( روشن نکنید روی خط مشغول کار هستند ) را آویزان نمود .

14 – هنگام کار در ارتفاع روی اسکلت فلزی یا نردبانی که از ان برای بالا رفتن به محل کار استفاده می کنند باید تابلوی (بالا رفتن از اینجا ) را آویزان نمود .

15 –در پائین روی اسکلت های فلزی مجاور محل بالا رو باید تابلو (بالا نروید – خطر مرگ دارد ) را آویزان نمود .

16 – در تمام محل های آماده کار تابلوی (دراینجا باید کار کرد ) را آویزان نمود .

17 – درزمان اجرای کار ، پرسنل تعمیراتی نباید تابلوها و حصارها را جابجا و یا اقدام به برچیدن آنها نماید و به قسمتهای محصور شده قدم بگذارد .

کنترل نبود ولتاژ

18 – قبل از شروع انواع مختلف کار در ایستگاههای برق با قطع ولتاژ در محل کار بایستی فقدان ولتاژ بین کلیه فازها و هر فاز نسبت به زمین و سیم نول را در تمام ورودی ها کنترل نمود .

19 – کنترل نبود ولتاژدر دستگاههای برق تا ولتاژ 400 کیلو ولت باید به کمک نشان دهنده ولتاژ (فاز متر) انجام گیرد .


دانلود با لینک مستقیم


تحقیق درباره تدابیر ایمنی فنی هنگام قطع کامل ولتاژ و یا قطع قسمتی از ان 14 ص

تحقیق درباره پایداری ولتاژ

اختصاصی از یاری فایل تحقیق درباره پایداری ولتاژ دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 42

 

مقدمه ای بر پایداری ولتاژ

با تغییر ساختار جدیدی که در سالهای اخیر در سیستمهای قدرت پدید آمده که باعث میشود ئاحدهای تولیدی توان الکتریکی هرچه بیشتری را از خطوط انتقال عبور دهند، انتظار می رود شاهد فروپاشی ولتاژ گسترده تر و بیشتر سیستم های قدرت باشیم. برای مثال عبور توان بیش از حد یک خط انتقال باعث افت ولتاژ بیش از حد و کاهش ظرفیت انتقال توان الکتریکی به بخش مشخصی از سیستم قدرت گردد. (برای کمک کرده به واحدهای تولیدی در مواجهه و مقابله با این مسئله شرکت EPRI دست به تهیه این متن زده است که توضیح کامل و مناسبی است در مورد پایداری ولتاژ، تجزیه و تحلیل، سنجش، جلوگیری و کاهش اثرات آن.

پایداری ولتاژ چیست؟

تعریف IEEE از پایداری ولتاژ عبارتست از توانایی یک سیستم قدرت در نگهداری ولتاژ دائمی در همه باسهای سیستم بعد از بروز اغتشاش در شرایط مشخصی از بهره برداری. اغتشاش ممکن است خروج ناگهانی یکی از تجهیزات باشد یا افزایش تدیریجی بار. هنگامی که توان الکتریکی انتقالی به بار رو به افزایش است تا بتواند بار اضافه شده را تامین کند (بار ممکن است مکانیکی، حرارتی یا روشنایی باشد9، و هر دو مؤلفه یعنی توان و ولتاژ قابل کنترل بمانند، سیستم قدرت پایداری ولتاژی خواهد بودو اگر سیستم بتواند بار الکتریکی را منتقل کند و ولتاژ از دست برود سیستم تاپایدار ولتاژ است. فروپاشی ولتاژ هنگامی رخ یم دهد که افزاییش بار باعث غیرقابل کنترل شدن ولتاژ در ناحیه مشخصی از سیستم قدرت گردد. بنابراین ناپایداری ولتاژ در طبیعت خود یک پدیده ناحیه ای است، که میتواند بصورت فروپاشی ولتاژ کلی بدل گردد بدون هیچ پاسخ سریعی.

3. موضوعات پایداری ولتاژ چه هستند؟

آگاهی در مورد مشخصات بار که از شبکه های قدرت بزرگ قابل دسترسی هستند.

روشهای کنترل ولتاژ در ژنراتور ها، دستگاههای کنترل توان راکتیو (مانند خازنهای موازی، راکتورها) در شبکه.

توانایی شبکه در انتقال قدرت، به خصوص توان راکتیو، از نظر تولید به نقاط مصرف

هماهنگی بین رله های حفاظتی و ادوات کنترل سیستم قدرت.

4-در هنگام برزو ناپایداری چه اتفاقاتی می افتد؟

ناپایداری ولتاژ اغلب هنگامی رخ می دهد که بروز یک خطا ظرفیت سیستم انتقال یک شبکه قدرت را کاهش می دهتد. پس از بروز این خطا، به سرعت بار مصرفی بارهای حساس به ولتاژ افت می کند آنگونه که ولتاژ افت کرد.

این کاهش بارگیری بصورت موقتی باعث می شود که سیستم قدترت پایدار بماند. به هر حال با گذشت زمان توان مصرفی بارها افزایش خواهد یافت چرا که بسیاری از بارها بصورت دستی یا اتئماتیک کنترل میشدند تا بتوانند نیازهای فیزیکی ویژه و تعیین شده ای را برآورده کنند و همچنین نپ ترانسفورماتورهای قدرت به گونه ای تغییر خواهند کرد تا بتوان ولتاژ مورد نیاز را تامین نمود با اینکه ولتاژ در سمت ائلیه ترانس 0ولتاژ سیستم انتقال) مقدار مطلوب را نداشته باشد و از حد مطلوب پائینتر باشد. از هنگامی که بار به مقدار اولیه خود (قبل از بروز خطا) دست یافت، ممکن است سیستم قدرت وارد مرحله ناپایداری ولتاژ گردد که زمینه فروپاشی ولتاژ نیز هست. در خلال این مرحله بهره برداران (Operators) سیستم قدرت ممکن است کنترل ولتاژ و پخش بار در شبکه را از دست بدهند.

ممکن است توان راکتیو خروجی ژنراتورهای سیستم قدرت کاهش یابد تا از حرارت بیش از حد آنها جلوگیری به عمل آید، این کار باعث میگردد ذخیره توان راکتیو سیستم قدرت کاهش یابد و از دست برود. از طرفی با کاهش یافتن ولتاژ موتورها از حرکت باز می مانند که خود باعث مصرف توان راکتیو بسیاری میگردد که نهایتاً این امر فروپاشی کامل ولتاژ را در پی دارد.

5-چه چیزهایی باعث بروز فروپاشی ولتاژ در شبکه میگردند؟

از آنجایی که واحدهای تولیدی در صددذ انتقال توان هرچه بیشتر از خطوط انتقال هستند، وقوع فروپاشی ولتاژ محتمل تر است، چرا که توان راکتیو مصرفی خطهایی که بیش از حد بارگیری شده اند بیشتر است.

تجهیزاتی که بصورت پل به یکدیگر متصل هستند و همچنین موتورهای سرعت ثابت که مقدار مشخصی توان مصرف رمی کنند – حتی در مواقعی که ولتاژ کاهش می یابد – می توانند به طور موثری کاهش بار موقتی و طبیعی را که به سرعت کاهش ولتاژ شبکه رخ داده و می تواعث خروج در سیستم گردد را کاهش دهد. در پی انجام موارد فوق سیستم قدرت بص.رت ناپایدار درخواهد آمد (Whde Less Stable).

تغییر دهنده های تپ بار اثر ناپایدار کننده مشابهی دارند. برای جبران کاهش ولتاژ در اولیه سیستم، آنها با افزایش نسبت سعی در نگهداشتن ولتاژ ثانویه بصورت ثابت خواهد داتش. نتیجتاً ولتاژ در اولیه سیستم در قسمت ثانویه ظاهر نخواهد شد تا زمانی که LTC (Load Top Changer) به حد نهایی خود نرسد. علاوه بر موارد فوق عمل LTC سبب برزو افزایش توان راکتیو مصرفی در اولیه یم گردد، که باعث ناپایداری ولتاژ اولیه سیستم میگردد.

ادوات FACTS مانند SVCها و STAT COM ها می توانند از ظرفیت انتقال توان را با تامین ولتاژ بصورت اکتیو افزایش دهند اما فقط برای یک نقطه. در انتهای رنج کاری، یک تجهیز FACTS بطور ناگهانی توانایی خود را در کنترل از دست می دهد و بصورت یک تجهیز ثابت عمل می کند. توان راکتیو خروجی از یک خازن ثابت با کاهش ولتاژ نیز کم می شود (معمولاً با توان دوم ولتاژ V2). بدذون کنترل ولتاژ راکتیو، ولتاژ خط پایدار باقی نمی ماند یا اینکه به نقطه ای که فروپاشی ولتاژ در آن رخ می دهد نزدیکتر می گردد نسبت به موقعی که کنترل ولتاژ اکتیو صورت می گرفت.


دانلود با لینک مستقیم


تحقیق درباره پایداری ولتاژ

تحقیق درباره نوسانات ولتاژ

اختصاصی از یاری فایل تحقیق درباره نوسانات ولتاژ دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 221

 

فصل اول

فهرست

مقدمه

نوسانات ولتاژ ناشی از بارهای مختلف

بررسی اثرات tov بر یک شبکه نمونه

اضافه ولتاژهای ناشی از کلید زنی

اضافه ولتاژ های موجی

بررسی قرار دادن برقگیر در سمت فشار ضعیف

مقدمه

بحث نوسانات ولتاژو تاثییرات موقتی آن روی سیستم برق شاید در ابتدا به علت موقتی بودن این اثرات از اهمیت زیادی برخوردار نباشد ولی با دقت در این موضوع که این نوسانات با عبور از روی شبکه برق و گذر کردن از روی تجهیزات و وسایل حساس برقی و با توجه به دامنه بالای این اثر می تواند صدمات جبران ناپذیری به تجهیزات وارد کرده و باعث می گردد اهمیت این موضوع دو صد چندان گردد و حتی می تواند باعث ناپایداری خط عبوری انرژی گشته و صدمات جبران ناپذیری ایجاد کند .

بنابراین بحث در مورد عوامل ایجاد کننده و تاثیر گذار بر این موضوع ایجاد راهکاری مناسب برای کم کردن اثرات نامطلوب این موضوع و حدالامکان حذف کردن آن می تواند کمک قابل توجهی به صنعت انتقال و توزیع برق داشته باشد و کمک شایانی به پایداری هر چه بیشتر سیستم انتقال نماید. اما اکنون باید ببینیم چه عواملی ایجاد کننده ی این اثر نامطلوب می تواند باشد اگر از خود بارهای الکتریکی بحث را شروع کنیم می بینیم که بارها نیز می تواند به عنوان یک عامل تاثیر گذار در این موضوع باشند بارهایی نظیر کوره های الکتریکی موتورهای الکتریکی و دستگاههای جوش سهم به سزاییدر این مطلب دارند و پدیده هایی نظیر flicker ولتاژ نیز مسئله با اهمیتی است که در جای خود به بررسی آنها می پردازیم .

در ابتدای تبدیل شدن اختراع برق بعنوان یک صنعت همه گیر از آن بیشتر برای مصارف خانگی استفاده می گردد که این مسائل از اهمیت چندان زیادی برخوردار نبود لیکن با استفاده روز از فزون این پدیده جدید انرژی در صنعت این مسائل اهمیت خود را بخوبی نشان داد .

البته باید توجه داشت این موضوع با افت ولتاژ دائمی در طول یک خط انتقال برق کاملا متفاوت می باشد .

نوسانات ناشی از راه اندازی تجهیزات خاص در کارخانجات که در هنگام شروع کار احتیاج به مصرف بالایی دارند .

یکی دیگر از مسائل با اهمیت که باعث بوجود آمدن بحث پیچیده و با اهمیت حفاظت در شبک های مختلف می گردد بحث تغییرات ولتاژ ناشی از خطاهای گذرا در شبکه .

1-1 نوسانات ولتاژ ناشی از بارهای مختلف :

می توان علت ایجاد این نوسانات را اینگونه بررسی نمود که با وارد شدن انواع بارهای الکتریکی به شبکه با کشیدن جریان به سمت خویش باعث تغییر یکباره میزان انرژی داخل شبکه برق می گردد که با افت ولتاژ ناگهانی در شبکه روبرو خواهیم بود که البته در مورد بارهای کوچک می توان با استفاده از رگولاتورها این مسئله را حل نمود لیکن در مورد بارهای بزرگتر مانند کوره های القایی و موتورهای جوش بزرگ این راه نمی تواند برای نوسانات ناگهانی در ولتاژ خط کار موثری انجام دهد و باعث نوسانات ناگهانی در ولتاژ خط گردد .

اما محدوده مجاز این نوسانات برای بارهای مختلف ؟

برای بررسی آن ابتدا مفهمومی تحت عنوان flicker ولتاژ را بررسی می نماییم .

هر عاملی که باعث تغییر دامنه ولتاژ حتی در زمان خیلی کم گردد می توند عاملی برای ایجاد flicker ولتاژ باشد مانند سوییچ کردن بارهای مختلف چون جریان هجومی در لحظه راه اندازی از جریان حالت دایمی بیشتر می باشد بعنوان مثال راه اندازی موتورها یکی از منابع اصلی و معمولی ایجاد فلیکر می باشد هم چنین بارهایی که بصورت متناوب کار می کنند و مانند دستگاههای جوش قوسی یا نقطه ای و همچنین سوییچ کردن ادوات تصحیح ضریب قدرت مانند انواع بانک های خازنی.

روشهای جبران و تصحیح فلیکر :

در این مورد باید به چند نکته توجه داشت که بارهای متصل به شبکه های ضعیف در مقابل بارهای متصل به شبکه های بهم پیوسته (stiff net work) دارای نوسانات بیشتری خواهد بود .

در مورد راه اندازی موتوری می توان با استفاده از راه اندازها این مسئله را کاهش داد .

در مورد بانک های خازنی اگر همراه با بار سوییچ گردند هم می توانند اثر نامطلوب وارد شدن خود آنها را کاهش داد بلکه می توان اثرات مخرب بارها را نیز کاهش داد .

بررسی اثرات TOV بر یک شبکه نمونه :

هنگام بی بار بودن شبکه قدرت برای یک مدت طولانی اضافه ولتاژ خطوط متصل به ژنراتور ها می تواند به یک TOV خطرناک منجر گردد و حتی می توند باعث


دانلود با لینک مستقیم


تحقیق درباره نوسانات ولتاژ

تحقیق در مورد ترانس ولتاژ و عملکرد آنها

اختصاصی از یاری فایل تحقیق در مورد ترانس ولتاژ و عملکرد آنها دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

دسته بندی : وورد

نوع فایل :  .doc ( قابل ویرایش و آماده پرینت )

تعداد صفحه : 7 صفحه


 قسمتی از متن .doc : 

 

ترانس ولتاژ(( PT

به دلیل این که ولتاژ ورودی پست متناسب با ولتاژ وسایل اندازه گیری و منبع تغذیه رله ها و مدارهای کنترل نمی باشد از ترانس ولتاژ استفاده می کنند . این ترانس بصورت موازی در مدار قرار می گیرد و ولتاژ 66 کیلو ولت ورودی را به 105 ولت به منظور اندازه گیری ولتاژ و تغذیه رله ها و مدارهای کنترل تبدیل می کند.

ترانس جریان (CT)

ترانس جریان به صورت سری در مدار قرار می گیرد که بسته به کد آن ، جریان را به نسبت 600 به 5 یا 1200 به 5 تبدیل می کند .

اندازه گیری مستقیم جریان های زیاد ، مستلزم داشتن وسایل اندازه گیری بسیار حجیم و گران قیمت بوده و حفاظت در مقابل چنین جریان هایی مستلزم استفاده از رله هایی با طرح های بسیار متفاوت می باشد .

با بکار بردن ترانس جریان ، این امکان به وجود می آید که وسایل اندازه گیری معمولی و دستگاه های استاندارد ، به کار برده شده و نیز موجبات حفاظت افراد ، دستگاه های سنجش و وسایل کنترل در مقابل ولتاژهای زیاد فراهم گردد .

از طرف دیگر ، استفاده از ترانس جریان سبب می شود که بتوان وسایل سنجش را در فواصلی بسیار دورتر از مدارهای اصلی ، نصب نمود .

به هر حال ، کار اصلی ترانس جریان ، کاهش مقدار جریان سیستم به مقدار مناسبی است و این امر ، با از بین بردن ضرورت تماس مستقیم با ولتاژهای قوی همراه می باشد .

سکسیونر

سکسیونر وسیله قطع و وصل سیستم هایی است که بدون جریان هستند به عبارت دیگر سکسیونر قطعات و وسایلی را که فقط زیر ولتاژ هستند از شبکه جدا می سازد .

سکسیونرها در انواع های تیغه ای ، کشویی ، دورانی ، قیچی ای وجود دارند که در پست نی ریز از سکسیونر دورانی استفاده شده است . این سکسیونر به جای یک تیغه بلند و یک کنتاکت ثابت دارای دو تیغه دورانی می باشد که با برخورد آنها به هم ارتباط الکتریکی برقرار می شود . در این نوع کلید حرکت تیغه ها به موازات سطح افقی بر سطح محور پایه ها انجام می گیرد که بصورت یک فاز می باشند. به طوری که درموقع قطع ویا وصل سکسیونر پایه ها حول محور خود در جهت خلاف یکدیگر به اندازه 90 درجه می چرخند و باعث قطع و وصل کنتاکت ها می شوند .

دژنگتور

دژنگتور کلیدی است که می تواند در موقع لزوم جریان عادی شبکه و در موقع خطا جریان اتصال کوتاه وجریان اتصال زمین ها ویا هر نوع جریانی با هر اختلاف فازی را سریع قطع کند .

دژنکتور موجود در پست نی‌ریز از نوعSF6 می‌باشد که با گاز SF6 خنک می‌شود.که گاز داخل آن جرقه را خاموش می‌کند و اگر دژنکتور زیاد داغ شود مانع از منفجر شدن آن می‌شود.

مکانیزم قطع و وصل آن از نوع شارژ فنری می‌باشد که از داخل تابلو کنار خودش و همچنین از داخل اتاق فرمان کنترل می‌شود.

جعبه مارشالینگ

تابلویی است که کلیه سیم‌های حامل فرمان که از اتاق فرمان و چه از دستگاه‌ها وارد آن می‌شود.

ترانس

ترانس واقع در این پست برای تبدیل 66 به 20 کیلو ولت می‌باشد. این ترانس دارای یک تانک روغن می‌باشد که به آن کنسرواتور می‌گویند. برای حفاظت از ترانس رله بوخهلتس را قرار می‌دهند در داخل رادیاتور ترانس روغن وجود دارد که روغن آن به طور طبیعی و به صورت حرارت جریان می‌یابد و هوا هم بوسیله فن روغن را خنک می‌کند.

برای گرفتن رطوبت روغن داخل ترانس از سلیکاژن استفاده می‌کنند زمانی که ولتاژ ترانس کم یا زیاد بشود بوسیله تبچنجر تعداد سیم‌پیچ‌های ثانویه ترانس را کم یا زیاد می‌کنیم که تبچنجر این ترانس روی عدد 14 می‌باشد.

در این پست از یک ترانس کوچکتر تبدیل 20 کیلو ولت به 220 ولت استفاده شده که برای مصرف داخلی خود پست می‌باشد.

اتاق فرمان

در اتاق فرمان تعدادی تابلو وجود دارد که شامل تابلوهای آلارم ترانس 1 و 2 و … می‌باشد و دارای کنتور برای اندازه‌‌گیری است. در اتاق فرمان کنترل روی دستگاهها صورت می‌گیرد.

در اتاق دیگری تابلوهایی با دژنکتور کشویی وجود دارند که هر تابلو برق را به هر منطقه از شهر می‌فرستد.

باطری‌خانه

این پست دارای 105 باطری 2/1 ولت می‌باشد که به هم سری شده‌اند و با هم 125 ولت DC تولید می‌کنند. این باطری‌ها همیشه زیر شارژ می‌باشند و آب


دانلود با لینک مستقیم


تحقیق در مورد ترانس ولتاژ و عملکرد آنها

مقاله درباره مقالات تازه های صنعت برق

اختصاصی از یاری فایل مقاله درباره مقالات تازه های صنعت برق دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 32

 

موتور ولتاژ بالا

امروزه ساخت ماشین‌های الکتریکی ولتاژ بالا با استفاده از بکارگیری کابلهای ولتاژ بالا در سیم‌پیچی استاتور امکان پذیر شده است. پس از ساخت ژنراتور ولتاژ بالا اکنون شرکت ABB اکنون برای سطح ولتاژهای 20 کیلوولت تا 66 کیلو ولت با توان خروجی 45-5 مگاوات عملی شده است که با توسعه این طرح انتظار می‌رود سطح ولتاژ آن تا 150 کیلو ولت برسد. فن آوری موتور ولتاژ بالا بر مبنای یک طرح جدید و اثبات نشده نمی‌باشد زیرا این طرح‌ برای ژنراتورهای ولتاژ بالا با موفقیت اجرا گردیده است و اکنون ژنراتور ولتاژ بالا در نیروگاه آبی نصب شده است.

مقادیر نامی موتور نمونه آزمایشی است و ماکزیمم توان قابل تحویل به محور آن MW 5/6 می‌باشد. میزان کابل مصرفی برای این طرح سه حلقه می‌باشد که هر حلقه برای یک فاز است و هر کدام طولی در حدود 1500 متر دارد. این موتور مستقیما به شبکه وصل می‌گردد در نتیجه ترانسفورماتور و سوئیچگر ولتاژ متوسط حذف می‌گردد. با حذف ترانسفورماتور و تجهیزات سوئیچگر سرمایه‌گذاری اولیه و همچنین هزینه‌های سرویس، نگهداری و تعمیرات کاهش می‌یابد. با حذف ترانسفورماتور خطر نشتی روغن و آتش سوزی از بین می‌رود. سادگی این طرح سبب کاهش خطرات ناشی از اغتشاشات شبکه می‌گردد و هزینه‌های ناشی از توقف پائین می‌آید. یکی دیگر از مزایای مهم این طرح این است که موتورهای ولتاژ بالا در مقایسه با موتورهای رایج فضای کمتری اشغال می‌نمایند. سیستم خنک کنندگی این نوع موتورها براساس مقادیر نامی بر دو نوع می‌باشد. برای توانهای پائین از سیستم خنک کنندگی هوا استفاده می‌شود ولی در برای توانهای بالاتر استاتور با آب و روتور با هوا خنک می‌گردد.

منبع: شرکت ABB

آدرس: http://www.abb.com

آزمایش موفقیت آمیز ترانسفورماتورهای ابررسانایی HTS

یک تیم تحقیقاتی صنعتی در آمریکا متشکل از مهندسین و دانشمندان که زیر نظر شرکت Waukesha Electric Systems فعالیت می‌نمایند، در سال 1999 خبر تحول مهمی را در صنعت برق با انجام آزمایش موفقیت آمیز نوع جدیدی از ترانسفورماتورهای قدرت اعلام نمودند. ترانسفورماتورهای ابر رسانایی جدید در مقایسه با ترانسفورماتورهای رایج، کوچک و سبک‌تر می‌باشند و دارای طول عمر بیشتری نیز هستند. در این نوع ترانسفورماتورها دیگر نیازی به هزاران گالن روغن جهت عایقی و خنک سازی نمی‌باشد و در نتیجه خطر ایجاد حریق و مسائل زیست محیطی را نخواهد داشت. در ابر رساناها به علت عدم وجود مقاومت اهمی در برابر جریان dc تلفات اهمی برابر با صفر است. لذا با استفاده از ابر رساناها در ترانسفورماتورها تلفات کل ترانسفورماتور کاهش قابل ملاحظه‌ای خواهد یافت. تلاشهایی که جهت توسعه ترانسفورماتورهای ابر رسانا انجام می‌گیرد صرفا به خاطر مسائل اقتصادی و کاهش هزینه نیست. یکی دیگر از دلایل طرح این مبحث این است که در مراکز پر تراکم شهری، رشد مصرف 2 درصدی (سالیانه) به معنی نیاز به ارتقاء ظرفیت سیستم‌های موجود است. از طرفی بسیاری از پستهای توزیع به صورت Indoor بوده و در کنار ساختمانها نصب شده‌اند. در این نوع پست‌ها همانند دیگر پستهای توزیع، از ترانسهای روغنی استفاده می‌شود که استفاده از روغن، مشکلات و خطرات زیست محیطی و ایمنی مربوط به خود را دارد. در حالی که ترانسفورماتورهای ابر رسانا ماده خنک کننده نیتروژن است که خطری برای افراد و موجودات زنده ندارد به علاوه در این ترانسفورماتورها، خطر آتش‌سوزی نیز وجود ندارد. به همین لحاظ خنک کننده مورد استفاده در ترانسفورماتورهای ابررسانا به هیچ عنوان قابل مقایسه با روغنهای قابل اشتعال و مواد شیمیایی شیمی همچون PCB نیست.

آزمایشات بر یک نوع از این ترانسفورماتور با ظرفیت 1 MVA امکان سنجی فنی و سایر مزایای آن را به اثبات رسانده است. یکی از مزایای آن کاهش وزن ترانسفورماتور می‌باشد به طوری که برای یک ترانسفورماتور 30 MVA وزن آن از 48 تن به 24 تن خواهد رسید.

دو تغییر مهم در طراحی ترانسفورماتور که منجر به طراحی و ساخت این نوع ترانسفورماتورهای جدید شده است عبارتند از استفاده از مواد ابررسانایی دمای بالا به جای سیم پیچ‌های رایج مسی و بکارگیری از یک سیستم کوچک خنک سازی به جای سیستم خنک کننده رایج ترانسفورماتورهای معمولی.

ترانسفورماتور MVA , HTS 30 تقریبا به 200 پوند ابر رسانا نیاز خواهد داشت که هیچ گونه مقاومت الکتریکی ندارد و بنابراین هیچ‌گونه حرارتی تولید نخواهد کرد در حالی که در ترانسفورماتورهای رایج سیم‌پیچهای مسی که هزاران پوند وزن دارند منبع اصلی تولید گرما و ایجاد تلفات می‌باشند. فن‌آوری ترانسفورماتور HTS از نظر استفاده از یک سیستم خنک کننده حلقه بسته جهت خنک سازی سیم‌پیچ‌های ترانسفورماتور یکتا می‌باشد و قادر است که دمای سیم پیچ را تا 382- درجه فارنهایت برساند.

ترانسفورماتور HTS آزمایشی 1 MVA به عنوان یک بستر آزمایشی مناسب برای ارزیابی نوآوریهای تازه ساخته شده است.


دانلود با لینک مستقیم


مقاله درباره مقالات تازه های صنعت برق