یاری فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

یاری فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

تحقیق درمورد مثلث 9 ص

اختصاصی از یاری فایل تحقیق درمورد مثلث 9 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 9

 

مثلث

 

مثلث.

مثلث (سه‌گوش) شکلی مسطح است که از اتصال سه نقطه غیرهم‌خط در صفحه به وجود می‌آید. مثلث دارای سه ضلع و سه زاویه است.

مساحت مثلث

مساحت یک مثلث برابر یک دوم طول یک ضلع، ضرب در طول ارتفاع وارد بر آن، یعنی فاصله رأس سوم تا خط شامل ضلع انتخاب‌شده، است.

مساحت هر نوع مثلث بدون دانستن ارتفاع

فرض می‌کنیم a و b و c اضلاع یک مثلث از هر نوع داده شده باشد (خواه قائم الزاویه - متساوی الساقین - مختلف الاضلاع) فرمول زیر مساحت مثلث را یبان می‌کند :

if a+b+c=2p → s2=p(p-a)(p-b)(p-c)→ یعنی →

توان دوم مساحت مثلث از این فرمول یدست می‌آید با یک بار جذر گرفتن از آن مساحت مثلث را خواهیم داشت مرکز دایره محاطی محل برخورد عمود منصف های اضلاع مثلث است.

با دانستن خصوصیات بعضی از خطوط مانند ارتفاع یا عمود منصف و یا میانه میتوانیم به نتایج جالبی در مورد دست پیدا کنیم. برخی از این نتایج را بیان میکنیم: اگر بر سه ضلع مثلث خطوطی را عمود میکنیم به طوریکه این خطوط اضلاع را نصف نمایند.(در واقع عمود منصف اضلاع را رسم میکنیم)در این صورت محل برخورد این سه خط، مرکز دایره ای خواهد بود که مثلث را احاطه میکند . به این دایره، دایره محاطی گویند.این دایره طوری رسم میشود که از سه راس مثلث عبور کند. طبق قضیه فیثاغورث اگر مرکز دایره محاطی روی یکی از اضلاع قرار گیرد آنگاه زاویه مقابل آن ضلع قائم خواهد بود.به عبارتی دیگر مثلث ما قائم الزاویه خواهد بود. اگر مرکز دایره درون مثلث باشد ،مثلث ما یک مثلث حاده خواهد بود و اگر بیرون مثلث باشد، مثلث از نوع منفرجه خواهد بود. ارتفاع مثلث خط راستی است که از یک راس مثلث عبور کرده و بر ضلع مقابل آن راس عمود میشود.ضلعی را که ارتفاع بر آن عمود است را قاعده مثلث گویند.طول ارتفاع ، فاصله بین راس و قاعده نظیر ارتفاع است.اگر سه ارتفاع مثلث را رسم کنیم این سه ارتفاع همدیگر را در داخل مثلث قطع میکنند مگر در حالتی که مثلث ،منفرجه باشد.محل برخورد نیمسازهای مثلث مرکز دایره محیطی است.نیمساز یک زاویه از مثلث خط راستی است که از یک راس مثلث گذشته و آن زاویه را به دو قسمت مساوی تقسیم کند. اگر نیمسازهای سه زاویه مثلث را رسم کنیم این خطوط در نقطه ای درون مثلث همدیگر را قطع خواهند کرد.این نقطه مرکز دایره محیطی مثلث خواهد بود.این دایره درون مثلث قرار دارد به طوریکه اضلاع مثلث، خطوطی مماس بر دایره هستند.میانه یک مثلث خط راستی است که از راس مثلث گذشته و ضلع مقابل آن را به دو قسمت مساوی تقسیم میکند. سه میانه مثلث یکدیگر را در نقطه ای به نام مرکز مثلث قطع میکنند البته این نقطه مرکز ثقل مثلث نیز میباشدهمچنین این نقطه هر میانه مثلث را به نسبت 1 به 2 تقسیم میکند به طوریکه فاصله میان راس مثلث تا این نقطه دو برابر فاصله این نقطه تا نقطه میانی ضلع مقابل راس است.روابط بین ضلع ها در مثلث مجموع هر دو ضلع، بزرگتر از ضلع سوم است. در مثلث هر ضلع، بزرگتر از تفاضل بین دو ضلع دیگر است.روابط بین زوایا مجموع زاویه های داخلی مثلث 180 درجه است. مجموع زاویه های خارجی مثلث 360 درجه است. هر زاویه خارجی برابر مجموع دو زاویه داخلی مجاور آن است.روابط بین ضلع ها و زوایا در مثلث زاویه مقابل به ضلع بزرگتر از زاویه مقابل به ضلع کوچکتر بزرگتر است. ضلع مقابل به زاویه بزرگتر از ضلع مقابل به زاویه کوچکتر بزرگتر است. زوایای مقابل به اضلاع برابر برابرند و برعکس. هر مثلث متساوی الساقین متقارین است. عمود از رأس به قاعده مثلث متساوی الساقین قاعده و زاویه رأس آن را نصف می کند. زوایای قاعده مثلث متساوی الستقین برابرند. در مثلث قائم الزاویه زوایای حاده متمم اند. در مثلث قائم الزاویه متساوی الساقین، زوایای قاعده 45 درجه اند. در مثلث متساوی الاضلاع تمام زوایای داخلی برابرند، هر یک 60 درجه است. مثلثهای متساوی الاضلاع سه محور تقارن دارند. اگر یکی از زوایای مثلث قائم الزاویه ای 30 درجه باشد، ضلع مقابه به آن نصف وتر است.مساحت مثلث = ( قاعده × ارتــــــفاع ) ÷ 2 محیط مثلث = مجموع سه ضلع علم مثلثات بر اساس روابط موجود در مثلث قائم الزاویه تعریف و در علوم مختلف مهندسی بکاربرده میشود.

مثلث متساوی‌الاضلاع

از ویکی‌پدیا، دانشنامهٔ آزاد


دانلود با لینک مستقیم


تحقیق درمورد مثلث 9 ص

معرفی انواع سطوح درجه 2

اختصاصی از یاری فایل معرفی انواع سطوح درجه 2 دانلود با لینک مستقیم و پر سرعت .

معرفی انواع سطوح درجه 2


معرفی انواع سطوح درجه 2

این فایل با فرمت word شامل 19 صفحه می باشد که به معرفی کامل سطوح درجه دو شامل اشکال زیر می پردازد:

1- دایره

2-بیضی

3-سهمی

4-هذلولی

5-مثلث

6-مربع

7- لوزی


دانلود با لینک مستقیم


معرفی انواع سطوح درجه 2

تحقیق در مورد مثلث های رلو

اختصاصی از یاری فایل تحقیق در مورد مثلث های رلو دانلود با لینک مستقیم و پر سرعت .

تحقیق در مورد مثلث های رلو


تحقیق در مورد مثلث های رلو

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

تعداد صفحه27

مثلث های رلو :

برای جابجا کردن یک جسم از چهار چرخه استفاده می کنیم ولی اگر جسم سنگین باشد ممکنست محور چرخها در اثر سنگینی جسم کج شده و یا بشکند. همانطور که اغلب دیده ایم برای حرکت دادن چنین اجسامی سنگینی بهتر است چند غلتک استوانه ای شکل (مثل لوله یا میله گرد قطور) را به موازات یکدیگر روی زمین قرار دهیم ، سپس یک صفحه محکم مسطح روی آنها بگذاریم و بعد جسم سنگین را روی این صفحه منتقل نمائیم ، با هل دادن این دستگاه ، صفحه با بارش روی استوانه ها غلتیده و به جلو خواهد رفت . ضمن حرکت باید هر یکاز استوانه ها را که به ترتیب از عقب دستگاه خارج می شوند برداشته و مجداَ در جلو صفحه روی زمین قرار دهیم .

اگر زمینی که دستگاه روی آن حرکت می کند مسطح باشد ، جسم بدون تکان و به محاذات خود خواهد رفت .

علت حرکت بدون تکان جسم اینست که مقطع استوانه ای چرخنده دایره است و دایره نیز به اصطلاح ریاضیدانان یک منحنی مسدود متساوی العرض می باشد که در نتیجه فاصله بین صفحه زیر جسم و زمین همیشه ثابت
می ماند .


دانلود با لینک مستقیم


تحقیق در مورد مثلث های رلو

تحقیق در مورد قضیه تالس

اختصاصی از یاری فایل تحقیق در مورد قضیه تالس دانلود با لینک مستقیم و پر سرعت .

تحقیق در مورد قضیه تالس


تحقیق در مورد قضیه تالس

لینک پرداخت و دانلود *پایین مطلب*

 

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

  

تعداد صفحه:3

  

 فهرست مطالب

  قضیه تالس

اثبات

تاریخچه  

در هندسه ،قضیه تالس این مطلب را بیان میکند که اگر A و B و C نقاط روی دایره باشند و خط AC ،قطر دایره باشد آن وقت زاویه ABC یک زاویه قائم خواهد بود. به بیان دیگر مرکزدایره محیطی یک مثلث روی یکی از اضلاع مثلث قرار میگیرد اگر وتنها اگرآن مثلث قائم الزاویه باشد.

 

اثبات

فرض کنیم O مرکز دایره باشد در آن موقع OA=OB=OC
به این ترتیب OAB و OBC مثلث متساوی الساقین خواهند بود.در نتیجه زوایای OCB=OBC و BAO=ABO.
فرض کنیم Y=BAO و X=OBC ، چون جمع زوایای داخلی مثلث برابر 180 درجه است پس

  

دانلود با لینک مستقیم


تحقیق در مورد قضیه تالس

تحقیق در مورد مثلث

اختصاصی از یاری فایل تحقیق در مورد مثلث دانلود با لینک مستقیم و پر سرعت .

تحقیق در مورد مثلث


تحقیق در مورد مثلث

لینک پرداخت و دانلود *پایین صفحه*

 

فرمت فایل : Word(قابل ویرایش و آماده پرینت)

 

تعداد صفحه : 9

 

فهرست مطالب:

 

مثلث 

مساحت مثلث

مساحت هر نوع مثلث بدون دانستن ارتفاع

مثلث متساوی‌الاضلاع چندضلعی متساوی‌الاضلاع

مجموعه مندلبرو مثلث متساوی‌الساقین

 

مثلث.

مثلث (سه‌گوش) شکلی مسطح است که از اتصال سه نقطه غیرهم‌خط در صفحه به وجود می‌آید. مثلث دارای سه ضلع و سه زاویه است.

[ویرایش] مساحت مثلث

مساحت یک مثلث برابر یک دوم طول یک ضلع، ضرب در طول ارتفاع وارد بر آن، یعنی فاصله رأس سوم تا خط شامل ضلع انتخاب‌شده، است.

[ویرایش] مساحت هر نوع مثلث بدون دانستن ارتفاع

فرض می‌کنیم a و b و c اضلاع یک مثلث از هر نوع داده شده باشد (خواه قائم الزاویه - متساوی الساقین - مختلف الاضلاع) فرمول زیر مساحت مثلث را یبان می‌کند :

if a+b+c=2p s2=p(p-a)(p-b)(p-c) یعنی

توان دوم مساحت مثلث از این فرمول یدست می‌آید با یک بار جذر گرفتن از آن مساحت مثلث را خواهیم داشت مرکز دایره محاطی محل برخورد عمود منصف های اضلاع مثلث است.

با دانستن خصوصیات بعضی از خطوط مانند ارتفاع یا عمود منصف و یا میانه میتوانیم به نتایج جالبی در مورد دست پیدا کنیم. برخی از این نتایج را بیان میکنیم: اگر بر سه ضلع مثلث خطوطی را عمود میکنیم به طوریکه این خطوط اضلاع را نصف نمایند.(در واقع عمود منصف اضلاع را رسم میکنیم)در این صورت محل برخورد این سه خط، مرکز دایره ای خواهد بود که مثلث را احاطه میکند . به این دایره، دایره محاطی گویند.این دایره طوری رسم میشود که از سه راس مثلث عبور کند. طبق قضیه فیثاغورث اگر مرکز دایره محاطی روی یکی از اضلاع قرار گیرد آنگاه زاویه مقابل آن ضلع قائم خواهد بود.به عبارتی دیگر مثلث ما قائم الزاویه خواهد بود. اگر مرکز دایره درون مثلث باشد ،مثلث ما یک مثلث حاده خواهد بود و اگر بیرون مثلث باشد، مثلث از نوع منفرجه خواهد بود. ارتفاع مثلث خط راستی است که از یک راس مثلث عبور کرده و بر ضلع مقابل آن راس عمود میشود.ضلعی را که ارتفاع بر آن عمود است را قاعده مثلث گویند.طول ارتفاع ، فاصله بین راس و قاعده نظیر ارتفاع است.اگر سه ارتفاع مثلث را رسم کنیم این سه ارتفاع همدیگر را در داخل مثلث قطع میکنند مگر در حالتی که مثلث ،منفرجه باشد.محل برخورد نیمسازهای مثلث مرکز دایره محیطی است.نیمساز یک زاویه از مثلث خط راستی است که از یک راس مثلث گذشته و آن زاویه را به دو قسمت مساوی تقسیم کند. اگر نیمسازهای سه زاویه مثلث را رسم کنیم این خطوط در نقطه ای درون مثلث همدیگر را قطع خواهند کرد.این نقطه مرکز دایره محیطی مثلث خواهد بود.این دایره درون مثلث قرار دارد به طوریکه اضلاع مثلث، خطوطی مماس بر دایره هستند.میانه یک مثلث خط راستی است که از راس مثلث گذشته و ضلع مقابل آن را به دو قسمت مساوی تقسیم میکند. سه میانه مثلث یکدیگر را در نقطه ای به نام مرکز مثلث قطع میکنند البته این نقطه مرکز ثقل مثلث نیز میباشدهمچنین این نقطه هر میانه مثلث را به نسبت 1 به 2 تقسیم میکند به طوریکه فاصله میان راس مثلث تا این نقطه دو برابر فاصله این نقطه تا نقطه میانی ضلع مقابل راس است.روابط بین ضلع ها در مثلث مجموع هر دو ضلع، بزرگتر از ضلع سوم است. در مثلث هر ضلع، بزرگتر از تفاضل بین دو ضلع دیگر است.
روابط بین زوایا مجموع زاویه های داخلی مثلث 180 درجه است. مجموع زاویه های خارجی مثلث 360 درجه است. هر زاویه خارجی برابر مجموع دو زاویه داخلی مجاور آن است.روابط بین ضلع ها و زوایا در مثلث زاویه مقابل به ضلع بزرگتر از زاویه مقابل به ضلع کوچکتر بزرگتر است. ضلع مقابل به زاویه بزرگتر از ضلع مقابل به زاویه کوچکتر بزرگتر است. زوایای مقابل به اضلاع برابر برابرند و برعکس. هر مثلث متساوی الساقین متقارین است. عمود از رأس به قاعده مثلث متساوی الساقین قاعده و زاویه رأس آن را نصف می کند. زوایای قاعده مثلث متساوی الستقین برابرند. در مثلث قائم الزاویه زوایای حاده متمم اند. در مثلث قائم الزاویه متساوی الساقین، زوایای قاعده 45 درجه اند. در مثلث متساوی الاضلاع تمام زوایای داخلی برابرند، هر یک 60 درجه است. مثلثهای متساوی الاضلاع سه محور تقارن دارند. اگر یکی از زوایای مثلث قائم الزاویه ای 30 درجه باشد، ضلع مقابه به آن نصف وتر است.مساحت مثلث = ( قاعده × ارتــــــفاع ) ÷ 2 محیط مثلث = مجموع سه ضلع علم مثلثات بر اساس روابط موجود در مثلث قائم الزاویه تعریف و در علوم مختلف مهندسی بکاربرده میشود.


دانلود با لینک مستقیم


تحقیق در مورد مثلث