دانلود با لینک مستقیم و پر سرعت .
لینک پرداخت و دانلود *پایین مطلب*فرمت فایل:Word (قابل ویرایش و آماده پرینت)تعداد صفحه:93
فهرست:
حلقه و ایده آل :
تعریف
نکته
گزار
برهان
قضیه
بسته ضربی
رادیکال یک ایده آل
رادیکال جی کوبسن
مدول و زیر مدول
تعریف زیر مدول های خارج قسمتی
مدول و حلقه نوتری و آرتینی
شرط مینیمال
ولی قضایای بالا مقدمه ای برای ارائه قضیه اساسی زیر بود
- مدول ضربی
مدول بدون تاب
برهان زیر مدول بودن T ( M )
خواص اساسی از – M رادیکال ها
رادیکال ها در مدول های خاص
نتیجه
فصل دوم
2-1- حلقه و ایده آل :
تعریف : حلقه مجموعه ای است مانند R همراه با دو عمل دوتایی که معمولا با جمع و ضرب نشان می دهند به طوری که :
1 . ( R , + ) گروه آبلی است .
2 . به ازای هر R α , b , c (α b ) c = α ( b c ) . ( شرکت پذیر )
3 . . (α + b ) c = α c + b c , α ( b + c ) = α b + α c ( پخشی )
هرگاه علاوه بر این :
4 . اگر به ازای هر R α , b α b = b α گوییم حلقه تعویض پذیر است .
5 . هرگاه R شامل عنصری مانند 1 R باشد بطوری که : به ازای هر R α 1R . α = α . 1R = α آنگاه گوییم R یک حلقه تعویض پذیر یک دار است .
نکته : عنصر همانی جمعی حلقه عنصر صفر نام دارد و با 0 نمایش داده می شود .
تعریف : فرض کنید S , R حلقه و R → S : f یک نگاشت باشد در این صورت f را همومورفیسم ( یا همومورفیسم حلقه ای ) گوییم اگر و فقط اگر شرط های زیر برقرار باشند:
1 . به ازای هر R α . b f (α + b ) = f (α ) + f ( b ) ؛
2 . به ازای هر R α , b f (α b ) = f (α ) f ( b ) ؛
3 . f ( 1 R ) = 1 s
نکته : اگر f : A → B , g : B → C همومورفیسم حلقه ای باشند آنگاه ترکیبشان نیز همومورفیسم حلقه ای است .
تعریف : فرض کنید R یک حلقه تعویض پذیر باشد زیر مجموعه I از R را یک ایده آل می نامیم اگر شرط های زیر برقرار باشند :
1 . I زیر گروه جمعی R باشد .
2 . R r ، I i نتیجه بدهد R ir ؛
تعریف : فرض کنید R یک حلقه تعویض پذیر باشد . مقسوم علیه صفر R عضوی مانند R r است که به ازای آن عضوی مانند R y با شرط 0R ≠ r y .
تعریف : فرض کنید R حلقه تعویض پذیر باشد . در این صورت R را یک دامنه صحیح می گوییم اگر
1 . R حلقه صفر نباشد یعنی 0R ≠ 1R و
2 . 0R تنها مقسوم علیه صفر R باشد .
یا به عبارت دیگر اگر R α , b α b = 0 R آنگاه α = 0 R یا b = 0s .