دانلود با لینک مستقیم و پر سرعت .
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 23
به نام خدا
دانشگاه جامع علمی کاربردی
واحد جهاد دانشگاهی
موضوع ارائه :
آشنایی با شبکه
WiMax
زبان اصلی و ترجمه
استاد مربوطه:
جناب آقای مهندس عابدینی
گرد آورندگان:
مجید تفاهمی
مترجم :
مجید تفاهمی
تیر ماه
87
How WiMAX Works
by Marshall Brain and Ed Grabianowski
Inside This Article
1.
Introduction to How WiMAX Works
2.
How WiMAX Works
3.
What Can WiMAX Do?
4.
Dollars and Cents
5.
The WiMAX Scenario
6.
Lots More Information
7.
See all Internet articles
Photo courtesy Intel
Think about how you access the Internet today. There are basically three different options:
Broadband access - In your home, you have either a DSL or cable modem. At the office, your company may be using a T1 or a T3 line.
WiFi access - In your home, you may have set up a WiFi router that lets you surf the Web while you lounge with your laptop. On the road, you can find WiFi hot spots in restaurants, hotels, coffee shops and libraries.
Dial-up access - If you are still using dial-up, chances are that either broadband access is not available, or you think that broadband access is too expensive.
The main problems with broadband access are that it is pretty expensive and it doesn't reach all areas. The main problem with WiFi access is that hot spots are very small, so coverage is sparse.
What if there were a new technology that solved all of these problems? This new technology would provide:
The high speed of broadband service
Wireless rather than wired access, so it would be a lot less expensive than cable or DSL and much easier to extend to suburban and rural areas
Broad coverage like the cell phone network instead of small WiFi hotspots
This system is actually coming into being right now, and it is called WiMAX. WiMAX is short for Worldwide Interoperability for Microwave Access, and it also goes by the IEEE name 802.16.
WiMAX has the potential to do to broadband Internet access what cell phones have done to phone access. In the same way that many people have given up their "land lines" in favor of cell phones, WiMAX could replace cable and DSL services, providing universal Internet access just about anywhere you go. WiMAX will also be as painless as WiFi -- turning your computer on will automatically connect you to the closest available WiMAX antenna.
In this article, we'll find out how WiMAX works, what engineers are doing to make it better and what it could mean for the future of wireless Internet.
2. How WiMAX Works
Photo courtesy IntelWiMAX transmitting tower
In practical terms, WiMAX would operate similar to WiFi but at higher speeds, over greater distances and for a greater number of users. WiMAX could potentially erase the suburban and rural blackout areas that currently have no broadband Internet access because phone and cable companies have not yet run the necessary wires to those remote locations.
A WiMAX system consists of two parts:
A WiMAX tower, similar in concept to a cell-phone tower - A single WiMAX tower can provide coverage to a very large area -- as big as 3,000 square miles (~8,000 square km).
A WiMAX receiver - The receiver and antenna could be a small box or PCMCIA card, or they could be built into a laptop the way WiFi access is today.
A WiMAX tower station can connect directly to the Internet using a high-bandwidth, wired connection (for example, a T3 line). It can also connect to another WiMAX tower using a line-of-sight, microwave link. This connection to a second tower (often referred to as a backhaul), along with the ability of a single tower to cover up to 3,000 square miles, is what allows WiMAX to provide coverage to remote rural areas.
What this points out is that WiMAX actually can provide two forms of wireless service:
There is the non-line-of-sight, WiFi sort of service, where a small antenna on your computer connects to the tower. In this mode, WiMAX uses a lower frequency range -- 2 GHz to 11 GHz (similar to WiFi). Lower-wavelength transmissions are not as easily disrupted by physical obstructions -- they are better able to diffract, or bend, around obstacles.
There is line-of-sight service, where a fixed dish antenna points straight at the WiMAX tower from a rooftop or pole. The line-of-sight connection is stronger and more stable, so it's able to send a lot of data with fewer errors. Line-of-sight transmissions use higher frequencies, with ranges reaching a possible 66 GHz. At higher frequencies, there is less interference and lots more bandwidth.
WiFi-style access will be limited to a 4-to-6 mile radius (perhaps 25 square miles or 65 square km of coverage, which is similar in range to a cell-phone zone). Through the stronger line-of-sight antennas, the WiMAX transmitting station would send data to WiMAX-enabled computers or routers set up within the transmitter's 30-mile radius (2,800 square miles or 9,300 square km of coverage). This is what allows WiMAX to achieve its maximum range.
Global Area Network
The final step in the area network scale is the global area network (GAN). The proposal for GAN is IEEE 802.20. A true GAN would work a lot like today's cell phone networks, with users able to travel across the country and still have access to the network the whole time. This network would have enough bandwidth to offer Internet access comparable to cable modem service, but it would be accessible to mobile, always-connected devices like laptops or next-generation cell phones.
3.What Can WiMAX Do?
Intel Paves the Way
Intel will start making their Centrino laptop processors WiMAX enabled in the next two to three years. This will go a long way toward making WiMAX a success. If everyone's laptop already has it (which is predicted by 2008), it will be much less risky for companies to set up WiMAX base stations.
Intel also announced that it would be partnering with a company called Clearwire to push WiMAX even further ahead. Clearwire plans to send data from WiMAX base stations to small wireless modems. See Intel, Clearwire to Accelerate Deployment of WiMAX Networks Worldwide (Oct. 25, 2004).
WiMAX operates on the same general principles as WiFi -- it sends data from one computer to another via radio signals. A computer (either a desktop or a laptop) equipped with WiMAX would receive data from the WiMAX transmitting station, probably using encrypted data keys to prevent unauthorized users from stealing access.
The fastest WiFi connection can transmit up to 54 megabits per second under optimal conditions. WiMAX should be able to handle up to 70 megabits per second. Even once that 70 megabits is split up between several dozen businesses or a few hundred home users, it will provide at least the equivalent of cable-modem transfer rates to each user.
The biggest difference isn't speed; it's distance. WiMAX outdistances WiFi by miles. WiFi's range is about 100 feet (30 m). WiMAX will blanket a radius of 30 miles (50 km) with wireless access. The increased range is due to the frequencies used and the power of the transmitter. Of course, at that distance, terrain, weather and large buildings will act to reduce the maximum range in some circumstances, but the potential is there to cover huge tracts of land.
IEEE 802.16 Specifications
Range - 30-mile (50-km) radius from base station
Speed - 70 megabits per second
Line-of-sight not needed between user and base station
Frequency bands - 2 to 11 GHz and 10 to 66 GHz (licensed and unlicensed bands)
Defines both the MAC and PHY layers and allows multiple PHY-layer specifications (See How OSI Works)
WiMAX Could Boost Government Security
In an emergency, communication is crucial for government officials as they try to determine the cause of the problem, find out who may be injured and coordinate rescue efforts or cleanup operations. A gas-line explosion or terrorist attack could sever the cables that connect leaders and officials with their vital information networks.
WiMAX could be used to set up a back-up (or even primary)