یاری فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

یاری فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود تحقیق کامل درباره عملیات حرارتی

اختصاصی از یاری فایل دانلود تحقیق کامل درباره عملیات حرارتی دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 65

 

عملیات حرارتی 8

مطالعات و بررسیهایی که توسط یک شرکت بزرگ تولید کننده فولادهای ابزار، در رابطه با علل شکست و خرابیهای زودرس ابزارها و قالبها انجام شده، نشان می دهد که در %70 موارد، انجام عملیات حرارتی نادرست باعث ایجاد عیوب بوده است. بنابراین می توان ادعا کرد که عملیات حرارتی ، مهم ترین مرحله در ساخت ابزارها و قالبهای با کیفیت می باشد.

هر چند که امروزه توصیه می شود که از تجهیزات مدرن عملیات حراردتی، نظیر کوره های خلاء برای ساخت قالبها و ابزارها استفاده شود، ولی هنوز هم بسیاری از استادکاران عملیات حرارتی می توانند با تجهیزاتی شبیه به آهنگریهای قدیمی، قالبها و ابزارهای با کیفیت بسازند. از طرف دیگر نیز ممکن است یک اپراتور عملیات حرارتی با به کارگیری تجهیزات مدرن و پیشرفته نتواند یک قطعه را بخوبی عملیات حرارتی کرده و قطعه قالب به سرعت ترک برداشته و خراب شود.

در این فصل خلاصه ای از روشهای درست عملیات حرارتی قالبها وابزارها ارائه می شود.همچنین با استفاده از تصویرهای مختلف، مشکلات و عیوب رایج در عملیات حرارتی، به همراه روشهای پیش گیری از آنها نیز مطرح می شود.

عملیات حرارتی فقط سخت کردن نیست

عملیات حرارتی نقطه کانونی عملیات ساخت یک قالب یا ابزار به شمار می رود. البته هنوز هم در اغلب کارخانجات، بیشترین تأکید در عملیات حرارتی را بر ایجاد سختی مورد نظر در فولاد می کنند. ولی در واقع، سختکاری باید یک سطح سختی مطلوب را به همراه خواص فیزیکی ومهندسی فراوان دیگر در قطعه کار ایجاد کند، تا آن قطعه بتواند بهترین کارآیی را از خود بروز دهد. برای انجام چنین کاری باید کلیه پرسنلی که به نحوی با ساخت ابزارها و قالبها مرتبط هستند، یک اطلاعات پایه راجع به اصول، متالوژی، مشکلات رایج و تکنیکهای ساختکاری فولادها داشته باشند. این افراد باید سیکلهای حرارتی(Thermal Cycles) را در عملیات حرارتی بفهمند.

سختکاری دقیق قطعات باعث ایجاد یک ساختار پایدار، یکنواخت وریز دانه می شود که سختی در همه قسمتهای آن یکسان است و میزان تنش در آن کم می باشد.

مشخصات سختی مورد نیاز برای هر ابزار یا قالب را بررسی کنید،

در عملیات حرارتی قطعات سنگین با سطح مقطع زیاد و فرمهای پیچیده، دقت بیشتری به عمل آورید،

انجام سیکلهای تنش زدایی را قبل از ماشینکاری نهایی و قبل از سختکاری، فراموش نکنید،

زمان سیکلهای حرارتی را کوتاه نکنید، زمان کافی را برای عملیات مختلف نظیر تنش زدایی، پیش گرم، سختکاری، کوئنچ و تمپرینگ مصرف کنید،

سختی قطعه کار را پس از کوئنچ اندازه گرفته و ثبت کنید تا از صحت عملیات سختکاری اطمینان یابید،

قطعه کار را بیش از حد سخت نکنید، سختی ابزار باید تا اندازه ای باشد که نیازهای پیش بینی شده از نظر مقاومت سایشی و چقرمگی را تأمین نماید و

طراح سیکل عملیات حرارتی، باید اپراتور عملیات حرارتی را بشناسد و با روشهای سختکاری او، قابلیتها و محدودیتهای تجهیزات او آشنا شود.

هیچ کاری را به شانس واگذار نکنید.

هر ساله، ابزارها و قالبهای بسیاری به ارزش صدها هزار دلار، به دقت طراحی و ماشینکاری می شوند و سپس به بخش عملیات حرارتی ارسال می گردند، در حالیکه اطلاعات اندکی درباره نحوه عملیات حرارتی آنها از طرف واحد طراحی به اپراتورهای عملیاتی حرارتی ارائه می شود. بدین ترتیب تعداد زیادی ابزار به علت انجام نادرست عملیات حرارتی معیوب شده و نمی توانند کارایی خوبی در تولید داشته باشند.همیشه به یاد داشته باشید که فقط چند ساعت عملیات حرارتی نامناسب می تواند صدها ساعت کار انجام شده در مراحل طراحی و ساخت را به هدر دهد.

در شکل 8-2 یک ماتریس ساخته شده از فولاد A2 نشانداده شده است. این ماتریس پس از جازدن پرسی تکه هایی در شیارهای جانبی آن شکسته است.تردی خیلی زیاد این قطعه که در اثر تمپرینگ ناکافی آن ایجاد شده، باعث شکستن آن شده است، در حالی که سختی 62-64 HRC خیلی زیاد بوده و برای چنین ابزاری اصلاً مناسب نبوده است.

هیچ وقت عملیات حرارتی را به شانس واگذار نکنید. همیشه برای این کار یک برنامه تهیه کنید. یک فولاد مناسب برای


دانلود با لینک مستقیم


دانلود تحقیق کامل درباره عملیات حرارتی

تحقیق و بررسی در مورد مبدل های حرارتی

اختصاصی از یاری فایل تحقیق و بررسی در مورد مبدل های حرارتی دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 23

 

جدول مربوط به FF و FP و مقادیر ارائه شده برای Re در آن جدول است. به عنوان مثال برای Reهای بالاتر از 300 معمولا در روش Bell در محاسبه فاکتورها جریان را آشفته فرض می کنیم که ممکن است با ملاکهای قبلی برای Re تفاوت داشته باشد. که در بررسی جداول بیشتر با آن آشنا می شویم.

بررسی متد تینکر بر میزان و بررسی جریان نشتی است. میدانیم مبدلی یک مدل ایده آل است که هیچگونه جریان نشتی نداشته باشد. زیرا وجود جریان نشتی باعث کاهش میزان انتقال حرارت می گردد.

روش تینکر(Tinker):

جریانات نشتی در یک مبدل عبارتند از:

جریان نشتی بین لوله و بقل

جریان نشتی بین OTL و پوسته

جریان نشای بین بقل و پوسته

جریان نشتی به علت وجود صفحه جداکننده

هر چه میزان نشت سیال بیشتر باشد میزان ضریب انتقال حرارت کاهش پیدا می کند. به همین دلیل طراحی مبدل ها در متد بل مقادیر موجود در درجه اول با لحاظ کردن میزان نشتی در نظر گرفته شده اند.

در زیر شکل کلی جریانات نشتی ممکن در یک مبدل و همچنین نمای کلی یک پوسته را می بینید.

شکل 5-1- مسیرهای نشتی در داخل یک مبدل پوسته- لوله ای

متدبل براساس داده های اطلاعاتی و جداول آنها مورد بررسی قرار می گیرد در متد بل از فرضیات متد تینکر استفاده شده است. جداول متد بل برای مبدل های مختلف و شرایط مختلف در صفحات بعد آورده شده است.

1- اگر فقط یکی از b.sهای ابتدایی با انتهایی بزرگتر از دیگری بود میزان FE از همین جدول خوانده می شود با این تفاوت که Nb مورد استفاده عبارتند از:

+0.5](تعداد بافل های واقعی) Nb=2

2- این حدول برای جریان آشفته در بخشهای متقاطع مرکزی است اگر رژیم جریان آرام باشد داریم:

+1 در حالت آشفته = FE: برای جریان آرام

2

مبدل ایده آل مراه با دسته لوله ایده آل می باشد. بدین صورت که دسته لوله ایده آل طبق تعریف دارای مقطع مستطیلی است مثل Air Coolers که دارای دسته لوله مستطیل شکل است. رابطه محاسباتی آن عبارتند از:

 

FF و FP از جداول قبل محاسبه شده و FNL فاکتور محاسباتی دسته لوله ایده آل است.

برای ضریب انتقال حرارت پوسته

برای افت فشار

محاسبات مربوط به پوسته F:

تاکنون تمام محتسبات برای پوسته نوع E بوده است. در طراحی با تغییر نوع پوسته محاسبات کمی تغییر می کند همانطور که می دانیم در اشکال قبل معین است پوسته نوع F دارای بافل های طول است که باعث افزایش تعداد گذرهای پوسته در مبدل میگردد. در مقایسه بین پوسته نوع F,E می توان به نکات زیر دست پیدا کرد.

تعداد بافل های پوسته F دو برابر تعداد بافل های پوسته E است

سطح تماس سیال با لوله ها در پوسته F نصف تماس در پوسته E در یک سطح مقطع معین است.

با توجه به مورد فوق سرعت سیال در پوسته F دو برابر پوسته E است. (VF=2VE)

با توجه به روابط ضریب انتقال حرارت در پوسته داریم:

و این یعنی اینکه: P(سرعت جریان متقاطع) در نتیجه که با توجه به می توان نتیجه گرفت که

به همین ترتیب روابطی را برای محاسبه خواهیم داشت که این روابط عبارتند از:

مقادیر r,q,p با توجه به جریان و تجربه حاصل شده اند.

که این مقادیر عبارتند از:

آرام آشفته

36/0 64/0 P

1 75/1 q

1 2 r

نتیجه برای محاسبات پوسته نوع F کافی است که همان محاسبات پوسته E را صورت دهیم و در فرمول های فوق قرار دهیم.

رسوب گرفتگی(Fouling)

رسوب گرفتگی یک مبدل بستگی به نوع ماده و سیال مورد استفاده در داخل لوله و یا داخل پوسته دارد هر چه سیال کثیف تر و رسوب زاتر باشد اثر جرم گرفتگی آن بیشتر می باشد به طور کلی جرم گرفتگی یک مبدل بستگی به نوع مبدل- زمان کارکرد مبدل و سیال مورد استفاده مبدل دارد. رسوب گرفتگی باعث کاهش ضریب انتقال حرارت میشود این امر به دلیل آن است که لایه رسوب یک عامل مزاحم در سر راه انتقال حرارت است به همین دلیل در محاسبات مربوط به تعیین ضریب انتقال حرارت در یک مبدل داریم:

 

پس در نتیجه:

ارتعاش(Vibration):

یکی از مهمترین پارامترهای طراحی ارتعاش دسته لوله است. ارتعاش دسته لوله باعث می گردد که سر و صدای مبدل افزایش یابد و در اثر ارتعاش دسته لوله بریده شده و به مبدل آسیب میرساند عواملی چون برخورد دسته لوله ها به هم، بریدگی دسته لوله از محل اتصال جوش آن و یا از بین رفتن اتصال جوش آن و یا از بین رفتن اتصال پرچ شده باعث شکستگی دسته لوله می گردد. هر جسم یک فرکانس طبیعی مربوط به خود دارد در صورتیکه موج با همان فرکانس به دسته لوله برسد باعث ارتعاش جسم می گردد به چنین فرکانس طبیعی جسم می گویند فرکانس طبیعی بستگی به جنس و شکل و ساختمان جسم دارد.

معمولا جریان سیال داخل پوسته است که باعث ارتعاش دسته لوله میگردد مکانیزم های ارتعاش عبارتند از:

ضربه های گردابه ای(Vortex shedding)

ضربه های متناوب جریان آشفته(Turbulent buffeting)

چرخش الاستیکی جریان سیال(Parallel flow eddy formation)

سه مورد اول در مورد جریان متقاطع است و مورد آخر در مورد جریان محوری دسته لوله می باشد.

به دلیل اول در مورد متقاطع است و مورد آخر جریان محوری دسته لوله می باشد.

به دلیل اهمیت مکانیزم اول به بحث این مکانیزم می پردازیم.

هنگامیکه سیال به صورت عمودی روی دسته لوله میریزد در پایین دسته لوله میریزد در پایین دسته لوله جریان منطقه wake ظاهر می گردد که گردابه ها شروع به فعالیت میکند. در این منطقه یک ناحیه خلاء وجود دارد که گردابه ها به منطقه خلاء نیرو وارد میکند یک سری نیروها عمودیند و یک سری از نیروها افقی می باشند مرحله ارتعاش دسته لوله هنگامی است که:

Fv=fn


دانلود با لینک مستقیم


تحقیق و بررسی در مورد مبدل های حرارتی

دانلود مقاله کامل درباره سیستمهای حرارتی و برودتی و پکیج تهویه مطبوع 18ص

اختصاصی از یاری فایل دانلود مقاله کامل درباره سیستمهای حرارتی و برودتی و پکیج تهویه مطبوع 18ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 18

 

سیستمهای حرارتی و برودتی

پیشگفتار

از روزگاران قدیم، آب به عنوان مایه حیات و آبادانی مورد توجه انسان بوده است. بسیاری از شهرها در مناطقی احداث شده و شکل گرفته اند که در نزدیکی آنها منابع قابل استحصال آب وجود داشته است. شهرهای متعددی نیز به دلیل خشکسالی و کمبود آب متروک و رها شده اند. با پیشرفت تکنولوژی و سطح رفاه و بهداشت جوامع، وابستگی انسان به آب افزایش یافت به گونه ای که در دهه های اخیر مقدار مصرف سرانه آب به عنوان یک شاخص پیشرفته بودن کشورها مورد استفاده قرار می گیرد. مصارف عمده آب را به چند گروه می توان تقسیم کرد:

- مصارف بهداشتی و آشامیدنی از قبیل شرب، پخت و پز، استحمام، شستشوی البسه و ظروف و ...

- مصارف کشاورزی و فضای سبز

- مصارف صنعتی

- مصارف خدماتی از قبیل سیستم های تهویه مطبوع، آتش نشانی، شستشوی خودرو، شستشوی محوطه و ....

استان خراسان و بویژه شهر مشهد در ایام گذشته به عنوان یک منطقه ییلاقی و خوش آب و هوا مورد توجه مردم کشور بوده است. متاسفانه تغییر شرایط جوی موجب گردیده است مقدار نزولات جوی کاهش یابد و این موضوع سبب پایین رفتن سطح آبهای زیرزمینی شده است به گونه ای که در سالهای اخیر در رسانه ها با بکاربردن واژه هایی چون بحران آب، خشکسالی، کم آبی و .... مردم به صرفه جویی در آب فراخوانده می شوند. در ادامه استراتژی ترغیب مصرف کنندگان به صرفه جویی در ایام پیک مصرف تابستانی گاهی اوقات برنامه های قطع های زمانبندی آب در شهر مشهد به اجرا در می آید.

درمقاله حاضر در مورد مصارف سیستم های تهویه مطبوع که در گروه مصارف خدماتی قرار دارند بحث خواهد شد و تاثیر کم آبی بر انتخاب سیستم سرمایش مورد بررسی قرار می گیرد.

2- مصارف عمده آب در سیستم های تهویه مطبوع

در سیستم های رایج تهویه مطبوع، برجهای خنک کن که در سیستم های سرمایش کاربرد دارند عمده ترین مصرف کننده آب می باشند. بنابراین در این مقاله فقط سیستم های سرمایش مورد بررسی قرار خواهد گرفت. سیکل های تبرید که اساس کار دستگاه های چیلر هستند به دو دسته اصلی تقسیم می شوند.

1-2- سیکل های تراکم بخار

فرآیند 2-1 فرایند تراکم ایزنتروپیک است که در کمپرسور رخ می دهد و طی آن فشار سیال عامل افزایش می یابد. در طی فرایند 3-2 و در فشار ثابت، حرارت موجود در سیال خروجی از کمپرسور به محیط دفع می شود. فرایند 4-3 نمایانگر فرایند انبساط ایزنتروپیک است که در یک لوله موئین یا شیر انبساط صورت می گیرد و در فرایند 1-4 در اواپراتور یا چیلر، حرارت به سیال عامل منتقل می شود و بدین ترتیب سیکل کامل می گردد. در سیکل تراکمی بخار همواره رابطه زیر برقرار است:

کار خالص انجام شده در کمپرسور- حرارت جذب شده در اواپراتور(چیلر) = دفع حرارت در کندانسور

یا:

QH = QL + W

در سیکل های تبرید در عوض واژه کارایی حرارتی که در سیکلهای حرارتی و توانی کاربرد دارد، از واژه ضریب عملکرد استفاده می شود. این ضریب عبارتست از:

کار ورودی به سیکل / اثر سرمایشی = ضریب عملکرد

COP = QH / Win

تجهیزات تبرید( از قبیل چیلرها، کولرهای گازی، پکیج ها و ...) که دارای کمپرسورهای رفت و برگشتی، گریز از مرکز، و دنده ای یا پیچی هستند همگی در سیکل تبرید تراکم بخار کار می کنند. چیلرهای تراکمی بخار ساخت سازندگان داخلی عموما دارای کمپرسورهای رفت و برگشتی یا کمپرسورهای دنده ای هستند. چون کمپرسورهای دنده ای دارای کارایی بیشتری هستند در بخش های بعد فقط چیلرهای دارای این نوع کمپرسور بررسی و تحلیل می شوند.

2-2- سیکل های تبرید جذبی

از زمان ابداع این سیکل، چیلرهای جذبی گوناگونی ساخته شده است. در چیلرهای جذبی اولیه از آمونیاک به عنوان ماده جاذب استفاده می شد که به علت سمی بودن در سالهای بعد لیتیوم بروماید جایگزین آن شد. در چیلرهای جذبی رایج از لیتیوم بروماید به عنوان جاذب و از آب به عنوان مبرد استفاده می شود. نسل های ابتدایی چیلرهای جذبی از نوع یک مرحله ای یا تک اثره بودند ولی با پیشرفت تکنولوژی و به منظور افزایش کارایی چیلرها، چیلرهای دو مرحله ای یا دو اثره نیز تولید گردیدند. در چیلرهای جذبی در عوض انرژی الکتریکی ای که در سیکل های تبرید تراکم بخار برای به حرکت در آوردن سیال عامل مصرف می شود، از انرژی حرارتی استفاده می شود. این انرژی حرارتی می تواند توسط حرارتهای بازیافت شده، آب گرم، آب داغ، بخار آب، و یا احتراق مستقیم سوخت تامین گردد. چیلرهای جذبی دو مرحله ای شعله مستقیم که در آنها انرژی حاصل از احتراق سوخت بطور مستقیم مورد استفاده قرار می گیرد، در سال های اخیر به دلایل گوناگون از جمله بیشتر بودن ضریب عملکردشان نسبت به سایر گونه های چیلر جذبی مورد استقبال و توجه مهندسین تاسیسات قرار گرفته اند. بهمین دلیل، در ادامه بحث فقط به این نوع چیلر جذبی توجه خواهد شد.

اجزا اصلی چیلرهای جذبی دو مرحله ای عبارتند از: اواپراتور، جذب کننده، مولد با درجه حرارت بالا، مولد با درجه حرارت پایین، کندانسور، جداکننده مایع و بخار، مبدل حرارتی با درجه بالا، مبدل حرارت با درجه حرارت پایین، پمپ محلول با درجه حرارت بالا، پمپ محلول با درجه حرارت پایین، پمپ محلول، و پمپ مبرد، در سیکل ها جذبی نیز کارایی تجهیزات تبرید با ضریبی موسوم به ضریب عملکرد سنجیده می شود. این ضریب عبارتست از:

انرژی حرارتی سوخت مصرفی / اثر سرمایشی = ضریب عملکرد یا COP

3- سیستم ها و تجهیزات دفع حرارت


دانلود با لینک مستقیم


دانلود مقاله کامل درباره سیستمهای حرارتی و برودتی و پکیج تهویه مطبوع 18ص

سیستم های حرارتی و خنک کننده

اختصاصی از یاری فایل سیستم های حرارتی و خنک کننده دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 20

 

سیستم های حرارتی و خنک کننده

موتورهای الکتریکی :

یک موتور الکتریکی ، الکتریسیته را به حرکت مکانیکی تبدیل می‌کند. عمل عکس آن که تبدیل حرکت مکانیکی به الکتریسیته است، توسط ژنراتور انجام می‌شود. این دو وسیله بجز در عملکرد ، مشابه یکدیگر هستند. اکثر موتورهای الکتریکی توسط الکترومغناطیس کار می‌کنند، اما موتورهایی که بر اساس پدیده‌های دیگری نظیر نیروی الکتروستاتیک و اثر پیزوالکتریک کار می‌کنند، هم وجود دارند.ایده کلی این است که وقتی که یک ماده حامل جریان الکتریسیته تحت اثر یک میدان مغناطیسی قرار می‌گیرد، نیرویی بر روی آن ماده از سوی میدان اعمال می‌شود. در یک موتور استوانه‌ای ، روتور به علت گشتاوری که ناشی از نیرویی است که به فاصله‌ای معین از محور روتور به روتور اعمال می‌شود، می‌گردد. اغلب موتورهای الکتریکی دوارند، اما موتور خطی هم وجود دارند. در یک موتور دوار بخش متحرک (که معمولاً درون موتور است) روتور و بخش ثابت استاتور خوانده می‌شود.

موتور شامل آهنرباهای الکتریکی است که روی یک قاب سیم پیچی شده است. گر چه این قاب اغلب آرمیچر خوانده می‌شود، اما این واژه عموماً به غلط بکار برده می‌شود. در واقع آرمیچر آن بخش از موتور است که به آن ولتاژ ورودی اعمال می‌شود یا آن بخش از ژنراتور است که در آن ولتاژ خروجی ایجاد می‌شود. با توجه به طراحی ماشین ، هر کدام از بخشهای روتور یا استاتور می‌توانند به عنوان آرمیچر باشند. برای ساختن موتورهایی بسیار ساده کیتهایی را در مدارس استفاده می‌کنند.

انواع موتورهای الکتریکی :

1) موتورهای DC :

یکی از اولین موتورهای دوار ، اگر نگوییم اولین ، توسط مایکل فارادی در سال 1821م ساخته شده بود و شامل یک سیم آویخته شده آزاد که در یک ظرف جیوه غوطه‌ور بود، می‌شد. یک آهنربای دائم در وسط ظرف قرار داده شده بود. وقتی که جریانی از سیم عبور می‌کرد، سیم حول آهنربا به گردش در می‌آمد و نشان می‌داد که جریان منجر به افزایش یک میدان مغناطیسی دایره‌ای اطراف سیم می‌شود. این موتور اغلب در کلاسهای فیزیک مدارس نشان داده می‌شود، اما گاهاً بجای ماده سمی جیوه ، از آب نمک استفاده می‌شود.موتور کلاسیک DC دارای آرمیچری از آهنربای الکتریکی است. یک سوییچ گردشی به نام کموتاتور جهت جریان الکتریکی را در هر سیکل دو بار برعکس می کند تا در آرمیچر جریان یابد و آهنرباهای الکتریکی، آهنربای دائمی را در بیرون موتور جذب و دفع کنند. سرعت موتور DC به مجموعه ای از ولتاژ و جریان عبوری از سیم پیچهای موتور و بار موتور یا گشتاور ترمزی ، بستگی دارد.سرعت موتور DC وابسته به ولتاژ و گشتاور آن وابسته به جریان است. معمولاً سرعت توسط ولتاژ متغیر یا عبور جریان و با استفاده از تپها (نوعی کلید تغییر دهنده وضعیت سیم پیچ) در سیم پیچی موتور یا با داشتن یک منبع ولتاژ متغیر ، کنترل می‌شود. بدلیل اینکه این نوع از موتور می‌تواند در سرعتهای پایین گشتاوری زیاد ایجاد کند، معمولاً از آن در کاربردهای ترکشن (کششی) نظیر لکوموتیوها استفاده می‌کنند. اما به هرحال در طراحی کلاسیک محدودیتهای متعددی وجود دارد که بسیاری از این محدودیتها ناشی از نیاز به جاروبکهایی برای اتصال به کموتاتور است. سایش جاروبکها و کموتاتور ، ایجاد اصطکاک می‌کند و هر چه که سرعت موتور بالاتر باشد، جاروبکها می‌بایست محکمتر فشار داده شوند تا اتصال خوبی را برقرار کنند. نه تنها این اصطکاک منجر به سر و صدای موتور می‌شود بلکه این امر یک محدودیت بالاتری را روی سرعت ایجاد می‌کند و به این معنی است که جاروبکها نهایتاً از بین رفته نیاز به تعویض پیدا می‌کنند.


دانلود با لینک مستقیم


سیستم های حرارتی و خنک کننده

تحقیق در مورد آزمایشگاه عملیات حرارتی 36 ص.

اختصاصی از یاری فایل تحقیق در مورد آزمایشگاه عملیات حرارتی 36 ص. دانلود با لینک مستقیم و پر سرعت .

تحقیق درباه آزمایشگاه عملیات حرارتی 36 ص.
با فرمت word
قابل ویرایش و پرینت

تعداد صفحات : 36
فرمت : doc










اساتید مربوطه:
آقایان حداد و تیموری

گرد آورندگان:
عباس آذری

ترم ۴ رشته متالورژی
سال ۱۳۸۶
فهرست

صفحه
عنوان

4
مقدمه

5
عملیات سختکاری سطحی











مقدمه
در عملیات حرارتی فولاد معمولاً یکی از اهداف زیر دنبال می‌شود: تنش‌گیری حاصل از کار یا تنش گیری حاصل از سرد کردن ناهمگن بهینه سازی ساختار دانه در فولادهایی که بر روی آنها کار گرم انجام شده است
و ممکن است دانه‌های درشت داشته باشند. کاهش سختی فولاد و افزایش قابلیت شکل‌پذیری بهینه‌سازی ساختار دانه افزایش سختی فولاد به منظور زیاد شدن مقاومت سایشی و یا سخت کردن فولاد برای مقاومت بیشتر در شرایط کاری افزایش چقرمگی فولاد به منظور تولید فولادی که استحکام بالا و انعطاف‌پذیری خوبی دارد و افزایش مقاومت فولاد در برابر ضربه بهبود قابلیت ماشین‌کاری .بهبود خواص برش در فولادهای ابزار .بهینه کردن خواص مغناطیسی فولاد .بهبود خواص الکتریکی فولاد .





عنوان گزارش اول : عملیات حرارتی سخطی سطحی فولاد
تئوری
فولادهای مناسب برای انواع عملیات حرارتی متداولبرای هر کدام از چهار عملیات حرارتی سطحی متداول در فولادها (کربن‌دهی، نیتروژن‌دهی، کربن- نیتروژن‌دهی و نیتروژن- کربن‌دهی)، یک‌سری از فولادها مناسب بوده و توسط عملیات حرارتی مورد نظر، خواص بهینه‌ای به دست می‌آورند. در زیر، فولادهای مناسب برای هر عملیات سطحی با ذکر دلیل معرفی شده است.الف- فولادهای مناسب برای کربن‌دهیفولادهای ساده کربنی که برای سخت کردن سطحی به روش کربن‌دهی انتخاب می‌شوند، معمولاً کمتر از 2/0 درصد کربن دارند. این میزان کربن موجب می‌شود که فولاد پس از سخت شدن، حداکثر استحکام به ضربه و بیشترین انعطاف‌پذیری را داشته باشد. تحت شرایطی که استحکام بیشتری نیاز باشد، فولاد با درصد کربن اولیه تا حداکثر 3/0 درصد را نیز می‌توان انتخاب کرد.منگنز باعث پایداری سمنتیت شده و تا حدود 4/1 درصد، به کربن‌دهی کمک می‌کند. همچنین، کاربرد منگنز، ضخامت لایه سخت شده را افزایش می‌دهد. بنابراین، ضمن سرد کردن سریع، امکان ترک برداشتن قطعه بیشتر می‌شود که این امر باید در نظر گرفته شود.سیلیسیم، عنصری گرافیت‌زاست و باعث تجزیه سمنتیت می‌شود. لذا وجود آن در فولاد، کربن‌دهی را به تعویق می‌اندازد. بنابراین در فولادهایی که قرار است تحت عملیات کربن‌دهی قرار گیرند، مقدار سیلیسیم کمتر از 35/0 درصد انتخاب می‌شود.کروم، باعث پایداری سمنتیت و افزایش سختی و مقاومت به سایش پوسته سخت شده می‌شود. همچنین، حضور این عنصر منجر به افزایش استحکام مغز قطعه (تا حدودی) image

لینک دانلود آزمایشگاه عملیات حرارتی 36 ص. پایین


دانلود با لینک مستقیم


تحقیق در مورد آزمایشگاه عملیات حرارتی 36 ص.