یاری فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

یاری فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

تحقیق درمورد کنترل توان در CDMA

اختصاصی از یاری فایل تحقیق درمورد کنترل توان در CDMA دانلود با لینک مستقیم و پر سرعت .

تحقیق درمورد کنترل توان در CDMA


تحقیق درمورد کنترل توان در CDMA

فرمت فایل:  ورد ( قابلیت ویرایش ) 


قسمتی از محتوی متن ...

 

تعداد صفحات : 10 صفحه

کنترل توان در CDMA 1-3- مقدمه یکی از مفاهیم سوال انگیزی که غالباً توسط محققین مطرح می شود، “کنترل بهینه قدرت” می باشد.
کنترل قدرت یکی از فاکتورهای اساسی در سیستمهای سلولی CDMA می باشد که ارتباط مستقیمی و پایاپایی با ظرفیت و نگهداری سیستم دارد.
با مطالعاتی که در مورد تکنیکهای تخصصی کنترل بهینه توان صورت گرفته، ملاحظه شده که دست یافتن به این امر بخصوص در محیطهای دارای تضعیف (fading inu) امری بسیار مشکل می باشد. در این فصل ما به معرفی و بیان مفاهیم کنترل توان خواهیم پرداخت، همچنین به نقش آن در reverse- link, forward- link و تاثیرات کنترل توان در ارتباط با ظرفیت و نگهداری سیستم سلولی. همچنین به آنالیز کانالهای مختلف رادیو برای اینکه طرح کنترل قدرت امکان ردیابی صحیح را به ما بدهد خواهیم پرداخت.
سپس، تکنیکهای قابل قبول کنترل قدرت معرفی خواهد شد و معایب این روشها نیز بیان خواهد شد.
یک تکنیک جدید کنترل قدرت بر مبنای برآوردهای مطرح خواهد شد و نقش آن در محیطهای با افت سریع (fast fading) بررسی خواهد شد. قابل ذکر است که تکنیکهای کنترل توان مورد بحث در اینجا، مفاهیمی هستند که هم درسیستمهای ارتباط ماهواره ای CDMA و هم مخابرات سیار می توان مطرح کرد.
مدارات حلقه بسته کنترل توان در محیطهای موبایل ماهواره ای در مقابل تاخیری که ایجاد می کند، خیلی تاثیر گذار نمی باشد. 2-3- مفهوم کنترل توان کنترل قدرت در سیستمهای سلولی CDMA یک وسیله مهم برای کاهش دادن اثرات تداخل دسترسی چندگانه و در نتیجه، افزایش ظرفیت سیستم می باشد.
هدف ما این است که تمام سیگنالهای رسیده از موبایلهای مختلف (در داخل یک سلول) در گیرنده BS یک سطح قدرت ثابت بدون توجه به مکان موبایلها و خصوصیات کانالهای سلول، داشته باشند.
این موضوع تحت عنوان reverse-link power cont (موبایل به BS) که دستیابی به آن بسیار مشکل می باشد. کنترل توان forward link (BS به موبایل) در سیستم تک سلولی مورد نیاز نمی‌باشد، بلکه در سیستم چند سلولی مطرح می شود که برای کاهش تداخل سلولهای همسایه به یآن احتیاج داریم.
BS در حداقل سطح قدرت که مورد نیاز برای ارضاء کیفیت ارتباط دورترین موبایل می باشد، انتشار سیگنال می کند. 2-2- کنترل توان غیر بهینه (نامطلوب) در عامل، طبیعتاً رسیدن به یک کنترل توان کامل و بهینه غیر ممکن می باشد.
این موضوع یک اثر مستقیم در ظرفیت در سیستم CDMA که مورد بحث قرار خواهد گرفت دارد.
به هر حال تاثیر سیگنالهای رسیده از موبایلهای مختلف در BS با سطوح مختلف توان در روند سیستم در اینجا مورد آزمایش قرار خواهد گرفت.
این تاثیر در ارتباطات سلولی تحت عنوان تداخل دور و نزدیک مطرح می شود که هنگام نزدیکی MS به BS در حالت بدون کنترل توان ما یک سیگنال قوی تری نسبت به حالتی که دورتر باشیم داریم. به منظور ارزیابی محدودیتهای گیرنده CDMA تحت تداخل دور- نزدیک؛ مدل شبیه سازی شکل به کاربرده شده است.
مدل بیان شده برای کانالهای AW6N استاتیک می باشد که اگرچه از لحاظ عملی مطلوب نیست اما به عنوان یک مدل پایه برای مطالعات مقایسه ای در این زمینه؛ مورد استفاده گسترده بسیاری از محققان می‌باشد. در این مدل b2,b1 و c2,c1 بیتهای مدوله شده BPSK و دنباله کدهای مربوط به دو کاربر می باشند.
P2

متن بالا فقط تکه هایی از متن به صورت نمونه در این صفحه درج شده است.شما بعد از پرداخت آنلاین فایل را فورا دانلود نمایید

بعد از پرداخت ، لینک دانلود را دریافت می کنید و ۱ لینک هم برای ایمیل شما به صورت اتوماتیک ارسال خواهد شد.


دانلود با لینک مستقیم


تحقیق درمورد کنترل توان در CDMA

دانلود اقدام پژوهی با موضوع چگونه می توان رعایت بهداشت مدرسه را در دانش آموزان تقویت کرد

اختصاصی از یاری فایل دانلود اقدام پژوهی با موضوع چگونه می توان رعایت بهداشت مدرسه را در دانش آموزان تقویت کرد دانلود با لینک مستقیم و پر سرعت .

دانلود اقدام پژوهی با موضوع چگونه می توان رعایت بهداشت مدرسه را در دانش آموزان تقویت کرد


دانلود اقدام پژوهی با موضوع چگونه می توان رعایت بهداشت مدرسه را در دانش آموزان تقویت کرد

در این بخش اقدام پژوهی با موضوع چگونه می توان رعایت بهداشت مدرسه را در دانش آموزان تقویت کرد برای دانلود قرار داده شده است. این اقدام پژوهی در 19 صفحه، با فرمت WORD، قابل ویرایش و کاملاً فهرست و صفحه بندی می‌باشد.  لازم به ذکر است در این اقدام پژوهی رعایت تمامی فرمت های استاندارد رعایت فاکتورها و چارت‌های مورد تایید آموزش و پرورش صورت گرفته و همچنین توسط معلمین مجرب طراحی و تدوین گردیده است. در ذیل فهرست مطالب آن آورده شده است.


دانلود با لینک مستقیم


دانلود اقدام پژوهی با موضوع چگونه می توان رعایت بهداشت مدرسه را در دانش آموزان تقویت کرد

تحقیق درباره ی توان 10 ص

اختصاصی از یاری فایل تحقیق درباره ی توان 10 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 10

 

توان (ریاضی)

توان عملگری در ریاضی است که به صورت an نوشته می‌شود، به a پایه، و به n هم توان یا نما یا قوه می‌گویند. وقتی n عددی صحیح باشد، پایه n بار در خود ضرب می‌شود:

همانطور که ضرب عملی است که عدد را n بار با خودش جمع می‌کند:

توان را به صورت a به توان n یا a به توان nام می‌خوانند، و همچنین می‌توان آن را برای اعداد به توان غیرصحیح هم تعریف کرد.

 

توانی با چندین پایه: قرمز به توان e, سبز به توان ده و بنفش به توان 1.7. توجه داشته باشید که همه آنها از (0, 1) می‌گذرند. هر نشانه در محورها یک واحد است.توان معمولاً به صورت بالانویس در سمت راست پایه نشان داده می‌شود. توان عملی در ریاضیات است که در بسیاری علوم دیگر از جمله اقتصاد، زیست‌شناسی، شیمی، فیزیک و علم رایانه، در قسمت‌هایی مانند بهره مرکب، رشد جمعیت، سینتیک، موج و رمزنگاری استفاده می‌شود.

توان با نماهای صحیح

عمل توان با نماهای صحیح تنها نیازمند جبر پایه‌است.

نماهای صحیح مثبت

ساده ترین نوع توان، با نماهای صحیح مثبت است. نما بیانگر این است که پایه چند بار باید در خود ضرب شود. برای مثال 35 = 3 × 3 × 3 × 3 × 3 = 243. در اینجا 3 پایه و 5 نما است، و 243 باب است با 3 به توان 5. عدد 3، 5 بار در عمل ضرب نشان داده می‌شود چون نما برابر 5 است.

به طور قراردادی، a2 = a×a را مربع، a3 = a×a×a را مکعب می‌نامیم. 32 «مربع سه» و 33 «مکعب سه» خوانده می‌شوند.

اولین توان را می‌توانیم به صورت a0 = 1 و سایر توان‌ها را به صورت an+1 = a·an بنویسیم.

نماهای صفر و یک

35 را می‌توان به صورت 1 × 3 × 3 × 3 × 3 × 3 هم نوشت، عدد یک را می‌توان چندین بار در عبارت مورد نظر ضرب کرد، زیرا در همل ضری عدد یک تفاوتی در جواب ایجاد نمی‌کند و همان جواب گذشته را می‌دهد. با این تعریف، می‌توانیم آن را در توان صفر و یک هم استفاده کنیم:

هر عدد به توان یک برابر خودش است.

a1 = a

هر عدد به توان صفر برابر یک است.

a0 = 1

(برخی نویسندگان 00 را تعریف نشده می‌خوانند.) برای مثال: a0= a2-2= a2/a2 = 1 (در صورتی که a ≠ 0)

نماهای صحیح منفی

اگر عددی غیرمنفی را به توان -1 برسانیم، حاصل برابر معکوس آن عدد است.

a−1 = 1/a

در نتیجه:

a−n = (an)−1 = 1/an

اگر صفر را به توان عددی منفی برسانیم، حاصل در مخرج صفر دارد و تعریف نشده‌است. توان منفی را می‌توان به صورت تقسیم مکرر پایه هم نشان داد. یعنی 3−5 = 1 ÷ 3 ÷ 3 ÷ 3 ÷ 3 ÷ 3 = 1/243 = 1/35.

خواص

مهمترین خاصیت توان با نماهای صحیح عبارتست از:

 

که از آن می‌توان عبارات زیر را نتیجه گرفت:

 

 

از آنجایی که جمع و ضرب خاصیت جابجایی دارند (برای مثال 2+3 = 5 = 3+2 و 2×3 = 6 = 3×2) توان دارای خاصیت جابجایی نیست: 23 = 8 است در حالی که 32 = 9. همچنین جمع و ضرب دارای خاصیت انجمنی هستند (برای مثال (2+3)+4 = 9 = 2+(3+4) و (2×3)×4 = 24 = 2×(3×4)) توان باز هم دارای این خاصیت نیست: 23 به توان چهار برابر است با 84 یا 4096، در حالی که 2 به توان 34 برابر است با 281 یا 2,417,851,639,229,258,349,412,352.

توان‌های ده

در سیستم مبنای ده، محاسبه توان‌های ده بسیار راحت است: برای مثال 106 برابر است با یک میلیون، که با قرار دادن 6 صفر در جلوی یک به دست می‌آید. توان با نمای ده بیشتر در علم فیزیک برای نشان دادن اعداد بسیار بزرگ یا بسیار کوچک به صورت نماد علمی کاربرد دارد؛ برای مثال 299792458 (سرعت نور با یکای مترمکعب بر ثانیه) را می‌توان به صورت 2.99792458 × 108 نوشت و به صورت تخمینی به شکل 2.998 × 108. پیشوندهای سیستم متریک هم برای نشان دادن اعداد بزرگ و کوچک استفاده می‌شوند و اصل این‌ها هم بر توان 10 استوار است. برای مثال پیشوند کیلو یعنی 103 = 1000، پس یک کیلومتر برابر 1000 متر است.

توان‌های عدد دو

توان‌های عدد دو نقش بسیار مهمی در علم رایانه دارند زیر در کامپیوتر مقادیر 2n را می‌توان برای یک متغیر n بیتی درنظر گرفت.

توان‌های منفی دو هم استفاده می‌شوند، و به دو توان اول نصف و ربع می‌گویند.

توان‌های عدد صفر

اگر توان صفر مثبت باشد، حاصل عبارت برابر خود صفر است: 0n = 0.


دانلود با لینک مستقیم


تحقیق درباره ی توان 10 ص

تحقیق درمورد آموزش ریاضیات

اختصاصی از یاری فایل تحقیق درمورد آموزش ریاضیات دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 6

 

آموزش ریاضیات، تنها برای افزایش توان فکری یا تحلیلی بشریت و کاربرد در زندگی یا سایر علوم مرتبط نیست. ریاضیات به علت داشتن تاریخ طولانی، انبوهی از دانسته ها را پدید آورده است، که بخش مهمی از علم و دانش بشری را تشکیل می‌دهد. بنابراین اگر آموزش را به عنوان ابزار حفظ، انتقال و بالا رفتن سطح فرهنگ جامعه و مخاطبان تعریف کنیم. یکی از وظایف معلم‌های ریاضی این است که دستاوردهای عظیم تاریخ ریاضیات را از طریق مدارس و کلاس های درس به نسل آینده انتقال دهند.

در کلاس‌های درس ریاضیات کنونی، اغلب معلمان ریاضی همواره می‌کوشند، تا ابتدا دانش‌آموزان درک درستی از مفاهیم ریاضی داشته باشند، سپس تکنیک ها و روش‌های حل مسأله را ارائه می‌دهند و در مرحله آخر، کاربردهایی از درس مورد نظر را برای دانش‌آموزان بیان می‌کنند و در ارائه این مطالب از روش‌های مختلف آموزش استفاده می‌کنند. اما معلم ریاضی با دانستن تاریخ ریاضیات براساس فعالیت دانش‌آموز، می‌تواند طوری تدریس کند که دانش‌آموز در فرایند حل مسأله یا اثبات یک قضیه قرار گرفته و تنها به راه حل اکتفا نکند. با این روش کاری می کنیم که دانش‌آموز، مراحل مختلف حل مسأله را خودش انجام دهد. این کار باعث می‌شود که دانش‌آموز تا اندازه ای در جریان حل مسأله و تاریخچه کشف یک قضیه قرار گیرد و به جای تکرار لفظی قضایا، علم را پیش خود بازآفرینی کند، تا این که به نتیجه مطلوب برسد. باید توجه داشته باشیم که تاریخ ریاضی فقط نقل روایت های زندگی علمی دانشمندان نیست.

وقتی به تاریخ می نگریم، ملاحظه می کنیم که در گذشته دور، سقراط نیز مسأله آموزش و پرورش و تئوری‌های یادگیری را مورد مطالعه قرار داده است. سقراط در روش خود، موسوم به روش «مامایی» بیان می کند که آموزش باید طوری باشد که دانش‌آموز (به معنی اعم آن) مفاهیم را بزاید و به نظر او معلم در این تولد، نقش «ماما» را دارد. همچنین ژان ژاک روسو اعتقاد خود را به آموزش بر محور دانش‌آموز بیان می کند، همچنین وی تاکید می‌کند که دانش‌آموز باید علم را پیش خود بازآفرینی کند. او می‌گوید دانش‌آموز باید علوم را کشف کند.

ژاک آدمار در کتاب روان شناسی ابداع در ریاضیات از قول هانری پوانکاره می نویسد:

«من بیان خواهم کرد که حل فلان قضیه، تحت بهمان شرایط اتفاق افتاد؛ این قضیه یک نام غیر مصطلح دارد که برای بسیاری کسان بیگانه است، اما این موضوع اهمیتی ندارد، آنچه برای روان شناس ریاضی جالب است، نه خود قضیه بلکه اوضاع و احوالی است که به ابداع منجر می‌شود.»

جمیز کلارک ماکسول معتقد است، خیلی مفید خواهد بود، اگر شاگردان در هر مبحثی، نوشته های دست اول مربوط به آن مبحث را بخوانند، زیرا علوم همیشه در همان صورتی که تولد یافته اند، بهتر جذب می‌شوند.‌‌

بنابراین، برای رسیدن به هدف های ظریفی که توسط محققان آموزش ریاضی در بالا پیشنهاد شده است، یعنی «افزایش درک ریاضی»، باید تاریخ ریاضیات را به عنوان یک ابزار موثر در دست معلم برای دادن بینش به دانش‌آموزان و برانگیختن علاقه آن‌ها در نظر گرفت. اگر با کاوشی در تاریخ ریاضیات بتوانیم دانش‌آموز را در اوضاع و احوالی قرار دهیم که منجر به کشف یک قضیه یا فرایند حل یک مسأله ‌شود در این صورت تدریس را به طور جذاب‌تر انجام داده‌ایم و دانش‌آموز با فکر خود «مانند یک ریاضیدان» شروع به اکتشاف می کند. در نتیجه دانش‌آموز با این عمل مفاهیم را کمتر فراموش خواهد کرد و چه بسا با این فرایند، دانش‌آموز بتواند مطالبی را با فکر خود بزاید، که برای ما تازگی داشته باشد، زیرا ریاضیات در حقیقت آفرینش آزادانه ذهن بدون هیچ محدودیتی به جز ماهیت خود ذهن است.

آشنایی با تاریخ ریاضیات، تسلط معلمان ریاضی را بر مباحث درسی کامل‌تر می کند و به آن‌ها امکان می دهد تا موضوع تدریس خود را عمیق تر و با احساس قوی‌تری درک و تدریس کنند. تا این جا دلایل لزوم آموزش تاریخ ریاضی در کلاس درس ذکر شد، اکنون نقش تاریخ ریاضیات در آموزش ریاضی را به شش مورد ذیل تقسیم می‌کنیم، سپس درباره هر کدام شرح می دهیم:

1ـ تاریخچه مختصری از موضوع درسی می‌تواند در دانش‌آموز ایجاد انگیزه و کلاس درس را زنده‌تر و جذاب‌تر کند.

وقتی معلم، هنگام تدریس یک موضوع گوشه ای از تاریخ مرتبط با موضوع درسی را بیان می کند، چون این‌گونه مطالب برای دانش‌آموزان جذابیت دارد، بنابراین آن‌ها به طور دقیق به این مطالب گوش می دهند و آمادگی کامل را برای خود درس پیدا می‌کنند؛ یعنی یکی از راه‌های آماده کردن دانش‌آموزان در کلاس درس، گریزهایی است که معلم به تاریخ ریاضی می‌زند. بنابراین آگاهی از روند پیدایش مفهوم‌ها و مباحث هر رشته علمی از جمله ریاضیات، موضوع درسی را برای فراگیرنده آن ملموس‌تر و جذاب‌تر می کند و این امر، یادگیری مطالب ریاضی را سریع تر و آسان‌تر می کند. همچنین با این کار، دانش‌آموزان به درک علت پیدایش مفهوم‌ها و موضوع‌های ریاضی دست پیدا می‌کنند و این امر باعث ایجاد انگیزه برای آموختن یک موضوع درسی در دانش‌آموزان می‌گردد. در زیر به ارائه چند تاریخچه از مفاهیم ریاضی می پردازیم:

وقتی موضوع لگاریتم را تدریس می کنیم، اگر وقت کلاس و میزان اطلاعات دانش‌آموزان این اجازه را به ما ندهد که تاریخچه پیدایش لگاریتم را مطرح کنیم، دست‌کم باید نامی از جان نپر و کارهای شگفت انگیز او برده شود، به عنوان مثال؛ شگفت آور نیست که نبوغ و قدرت تجسم نپر، بعضی ها را بر آن داشت تا وی را از لحاظ فکری نامتعادل پندارند و برخی دیگر او را به عنوان رواج دهنده سحر و جادو تلقی کنند، همچنین داستان‌های نپر را درباره خروس سیاه زغالی … و کبوترهای مزاحم همسایه‌اش …

بازگو کنیم.

هنگامی که موضوع احتمال را تدریس می کنیم، معمولاً تاریخچه علم احتمال را براساس بازی های شانسی معرفی می کنیم،

در این صورت درس برای دانش‌آموزان جذاب‌تر شده و درمی‌یابند که ریاضیات در زندگی روزمره آن‌ها کاربرد دارد. در این باره می‌توان گفت:

بازی هایی که متکی بر شانس است، از زمان های بسیار قدیم رایج بوده است. در حفاری‌های باستان شناسی، برخی وسایل و آثار مربوط به بازی های شانسی مشاهده شده است که می‌توان از مکعبی استخوانی که روی وجه های آن عددهایی از 1 تا 6 نقش شده است، نام برد. امروزه در مواردی که به راحتی نتوان یک انتخاب را برانتخاب دیگر ترجیح داد، از شانس استفاده می‌شود؛ مثلاً برای شروع بازی از پرتاب سکه استفاده می‌کنند یا برای قبول یا رد یک موضوع از قرعه استفاده می‌کنند. در گذشته نیز خانواده‌هایی که همسرشان را به روش سنتی انتخاب می کردند، در حقیقت براساس شانس انتخاب همسر کرده‌اند. و در روزگار کنونی کسانی که قادر به تصمیم گیری نیستند، به فال گیری و پیش گویی روی می آوردند و از این طریق بر شانس تکیه می‌ورزند.

نخستین مسأله‌های مربوط به نظریه احتمال در سده شانزدهم میلادی پدید آمد و مسأله‌ای که انگیزه‌ای برای تولد احتمال شد، مربوط به دمره نامی از دوستان پاسکال بود؛ «قرار بود مبلغی پول بین دو نفر با انداختن یک تاس تقسیم گردد»، این مسأله را پاسکال حل کرد. سپس حل خود را به فرما نشان داد، و فرما به یاری آنالیز ترکیبی این مسأله را حل کرد. اکنون اگر کمی درباره تاریخ زندگی فرما صحبت کنیم. دانش‌آموزان درمی یابند که بعضی از ریاضیدانان بزرگ، شغل دیگری داشته‌اند و برای اوقات فراغت و سرگرمی، ریاضی می‌خواندند.

«پیرفرما، فرزند یک تاجر پوست؛ درس حقوق خواند و در آغاز به عنوان وکیل مدافع به کار پرداخت، ولی بعد مشاور مجلس شد که تا پایان زندگی خود آن را حفظ کرد. شغل فرما، هیچ ربطی به ریاضیات نداشت، و این از جلمه شگفتی هاست که وی از همه وقت آزاد خود برای بررسی های ریاضی استفاده می کرد. »

در جلسه اول تدریس هندسه در دورة متوسطه، قبل از پرداختن به درس، می‌توان جذابیت این درس را با این جملات، کامل‌تر کرد؛ هندسه از معرفت ناخودآگاه موسوم به هندسپه ناخودآگاه شروع می‌شود، می‌توان ناخودآگاه را علم مشترک انسان و حیوان معرفی کرد که از مشاهده تصاویر، شکل ها و طبیعت شروع می‌شود. برای مثال اگر آشیانه یک کلاغ دست کاری شود، دیگر کلاغ به آن لانه برنمی‌گردد چون شکلی از لانه در ذهن دارد که تغییر یافته است.

شکل اولین مفهوم ریاضی است که نزد انسان پیدا شده است و هندسه تجربی (هندسه بدون استدلال) را پدید آورده است.

«با استفاده از کاغذ یا مقوا، می‌توان به صورت شهودی مفاهیم و قضایای هندسی را به صورت هندسه تجربی برای دانش‌آموزان ارائه کنیم.»

بالاخره هندسه در تاریخ خود به هندسه برهانی منجر می‌شود که با اصول موضوعه شروع می‌شود. بنابراین مدل تکامل علم هندسه را می‌توان برای دانش‌آموزان به صورت زیر بیان کرد.

بعد از این که توانستیم در دانش‌آموز ایجاد انگیزه کنیم، باید او را هدایت کنیم، که وقت خود را برای حل مسائلی نگذارد که امتناع آن‌ها قبلاً ثابت شده است. به عنوان مثال، ما هنوز با دانش‌آموزان یا افرادی روبه رو هستیم که درباره تثلیث زاویه، تربیع دایره و تضعیف مکعب به کمک خط کش غیر مدرج و پرگار، وقت صرف می‌کنند؛ درحالی که عدم اثبات این‌گونه مسائل قبلاً ثابت شده است. بنابراین اگر معلم در کلاس با اطلاع از تاریخ ریاضیات، این صحبت ها را بازگو کند، دیگر کسی بی دلیل وقت خود را تلف نمی‌کند. اما کار برروی مسائلی که امتناع آن‌ها ثابت نشده است و می دانیم که بالاخره به طریقی باید راه حلی برای آن‌ها کشف کرد، مانند حدس گلدباخ می‌توانیم دانش‌آموزان را تشویق به‌کار روی این‌گونه مسائل کنیم و این مسائل دارای ویژگی مهمی به صورت زیر است:

«ریاضی‌دانان و حتی غیر ریاضی‌دانانی بر روی این گونه مسائل کار کرده‌اند و بعضی از آن ها ادعا می‌کردند که توانسته‌اند این مسائل را ثابت کنند، نکته مهم این است که ریاضی‌دانان برای این که بتوانند این مسائل را اثبات کنند، روش‌های جدیدی را پیدا کرده‌اند و هم اکنون این مسائل چه حل شده باشند، یا نباشند، چیزی که باقی مانده و ارزشمند است، روش‌ها و دیدگاه‌های مختلف ریاضی است.»

2ـ تقویت هدف پرورشی آموزش ریاضی که همان اعتقاد به خود و اتکای به نفس در دانش‌آموز است.

اغلب دانش‌آموزان تصور می‌کنند مطالبی را که می خوانند، از ابتدا به همین شکل، حاضر و آماده بوده است و کسی آن ها را پیدا نکرده، یا این گونه مطالب به کمک تردستی و شعبده بازی به دست آمده اند. درحالی که اگر مطالبی راجع به تاریخ ریاضی گفته شود، دانش‌آموزان می‌فهمند که این مطالب چه مراحلی را گذرانده‌اند. در ابتدای کار خیلی دقیق نبوده و به تدریج در طول سال‌ها و شاید قرن ها به وسیله ریاضیدانان به شکل امروزی درآمده است.

به همین مناسبت دانش‌آموز اعتماد به نفس ‍یدا می کند، اگر در جایی بی دقتی یا اشتباهی داشته باشد، متوجه می‌شود که ریاضیدان‌ها نیز در ابتدای کار چنین بوده‌اند و حتی بعضی از آن ها در نظر دیگران افرادی کندذهن به نظر می‌آمدند. در زیر به ارائه این‌گونه مطالب می پردازیم:

ریاضیدان های اروپایی و ایرانی به جواب های منفی معادله ها بی توجه بودند و به ‌آن‌ها اهمیتی نمی دادند و آن‌ها را جواب‌های دروغ و بی معنا می دانستند. عددهای منفی تنها وقتی مورد قبول عام قرار گرفتند که سرچشمه واقعی آن ها پیدا شد. این سرچشمه را هندی‌ها با این دیدگاه به وجود آوردند که عدد کمتر از صفر را قرض و مقدار مثبت را دارایی می نامیدند.

زمانی که بویویی و لباچفسکی در قرن 19 هندسه نااقلیدوسی را ابداع کردند، آن‌ها متوجه نبودند که با ابداع هندسه نااقلیدوسی، انقلابی در ریاضیات به وجود آورده اند و مطمئناً هرگز تصور نمی‌کردند که صد سال بعد از این کار، فیزیکدانان در فرمول‌بندی نظریه نسبیت، هندسه نااقلیدوسی را درست همان ابزاری می‌یابند که برای ساده‌سازی نظریه اینشتین نیاز دارند. در حقیقت ابداع کنندگان مفاهیم و دستگاه‌های ریاضی، غالباً کاربردهای این مفاهیم و دستگاه‌ها را پیش بینی نمی‌کردند و چنین کاربرهایی، سال‌ها بعد به روش‌های پیش بینی نشده‌ای یافت می‌شوند.

در کتاب مشهور «مقدمات» اقلیدس، یک اصل وجود دارد که می‌گوید: «هرکل، از جزء خود بزرگتر است.»

این «اصل» چنان بدیهی به نظر می‌رسید که کسی کمترین تردیدی درباره درستی آن نداشت. ولی امروزه می‌دانیم، که این اصل، تنها درباره مجموعه با پایان درست است. زیرا اگر فرض کنیم

[ 2 و 1 ] = A و (2 و1) = B می دانیم B زیر مجموعه A است درحالی که طول دوبازه A و B برابر یکدیگراند، یعنی:

L A = L B

درباره نحوه پیدایش مشتق و دیفرانسیل می‌توان گفت:

مفهوم‌های اصلی آنالیز ریاضی برای نیوتن بازتابی از مفهوم های مکانیک بود. نیوتن ساده‌ترین شکل‌های هندسی یعنی خط، زاویه و جسم را با جابه جایی مکانیکی در نظر می‌گرفت. لایپ نیتس از درون هندسه به مفهوم مشتق و دیفرانسیل رسید. درضمن، بسیاری از اصطلاح‌هایی که لایپ نیتس در نوشته‌های خود به کار برده است، چنان خوب انتخاب شده بودند که تا امروز در ریاضیات باقی مانده است، از جمله می‌توان اصطلاح های تابع، مختصات، منحنی جبری و نمادهایی مانند: ∫ ، ý و dy را نام برد.

با آن که نیوتن کوشیده بود، نظریه حد را با دقت بیان کند، بازهم کمبودهایی در آن دیده می شد. از این گذشته در استفاده نیوتن از مقدارهای بی نهایت کوچک هم، ناروشنی هایی به چشم می‌خورد. همچنین لایپ نیتس و هواداران معاصر وی، تعریفی از کمیت‌های بی‌نهایت کوچک ارائه نداده اند. به این ترتیب، آنالیز ریاضی به صورت ابزار نیرومندی برای مطالعة پدیده‌ها در دست انسان بود، بدون این که خود آنالیز ریاضی به درستی در پایه های خود سازمان یافته و ساختاری منطقی داشته باشد.

بعدها یاکوب برنولی و فرانسوا هوپیتال ادامه دهندگان کار نیوتن و لایپ نیتس شدند و هوپیتال در سال 1696 کتاب

«آنالیز بی‌نهایت کوچک» را منتشر کرد که باید آن را نخستین کتاب منظم درسی در زمینه دیفرانسیل و انتگرال دانست. بالاخره کوشی (1789ـ1857) ریاضیدان فرانسوی با تعریف کمیت‌های بی‌نهایت کوچک، توانست پایه‌های آنالیز ریاضی را مستحکم کند.

3ـ معرفی ریاضیدانان ایرانی به عنوان الگو، حفظ و انتقال فرهنگ ریاضی کشورمان به نسل آینده

معرفی ریاضیدانان ایرانی و کارهایی که آن‌ها انجام داده‌اند، باعث می‌گردد که دانش‌آموزان الگوهایی درست در جهت فعالیت درسی انتخاب کنند. وقتی دانش‌آموزان بفهمند که اساس حساب، جبر و مثلثات در ایران بنیان نهاده شده است و ریاضیدان‌های ایرانی، حتی مثلثات کروی را هم تجزیه و تحلیل کرده بودند، در این صورت نسبت به خودشان و کشورشان در مقابل دیگران احساس ضعف نمی‌کنند. وقتی به تاریخ ارج گزارده شود، دانش‌آموزان درمی یابند که اگر روزی در زمینه ریاضیات کاری انجام دهند، بعدها از آن‌ها نامی در تاریخ خواهد ماند و همین امر باعث ایجاد انگیزه در دانش‌آموز می‌شود.

اگر به بناهای سنتی و باستانی سراسر ایران با دقت بنگریم یا به موزه ها برویم و دست ساخته‌های عتیقه و قدیمی را ملاحظه کنیم، در این صورت در همه آن ها، مفاهیم و شکل‌های هندسی را ملاحظه می‌کنیم که تجلی بخش معماری و صنعت ایرانی است. بنابراین این نوع دست ساخته‌های ریاضی‌وار و همچنین نوع زندگی (معیشتی، اعتقادی) و نوع کار کردن علمی ریاضیدانان ایرانی بخشی از فرهنگ ما را تشکیل می دهد، که معلم ریاضی می‌تواند آن را در کلاس درس به نسل آینده منتقل کند.

4ـ پاسخ گویی به بعضی از پرسش های دانش‌آموزان که به اطلاعات دقیق تاریخ ریاضی نیاز است .

گاهی در کلاس درس، سؤالاتی برای دانش‌آموزان پیش می آید که معلم برای پاسخ به آن ها باید اطلاعات دقیقی از تاریخ ریاضی داشته باشد. در زیر به چند نمونه می‌پردازیم:

واژه سینوس در حقیقت تغییر شکل یافته واژه لاتینی است که ترجمه واژه عربی «جیب» است، که ریاضیدانان مسلمان اشتباهاً به جای واژه هندی «جیا» به معنی «نصف وتر» به کار می بردند.


دانلود با لینک مستقیم


تحقیق درمورد آموزش ریاضیات

دانلود تحقیق درباره توان 10 ص

اختصاصی از یاری فایل دانلود تحقیق درباره توان 10 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 10

 

توان (ریاضی)

توان عملگری در ریاضی است که به صورت an نوشته می‌شود، به a پایه، و به n هم توان یا نما یا قوه می‌گویند. وقتی n عددی صحیح باشد، پایه n بار در خود ضرب می‌شود:

همانطور که ضرب عملی است که عدد را n بار با خودش جمع می‌کند:

توان را به صورت a به توان n یا a به توان nام می‌خوانند، و همچنین می‌توان آن را برای اعداد به توان غیرصحیح هم تعریف کرد.

 

توانی با چندین پایه: قرمز به توان e, سبز به توان ده و بنفش به توان 1.7. توجه داشته باشید که همه آنها از (0, 1) می‌گذرند. هر نشانه در محورها یک واحد است.توان معمولاً به صورت بالانویس در سمت راست پایه نشان داده می‌شود. توان عملی در ریاضیات است که در بسیاری علوم دیگر از جمله اقتصاد، زیست‌شناسی، شیمی، فیزیک و علم رایانه، در قسمت‌هایی مانند بهره مرکب، رشد جمعیت، سینتیک، موج و رمزنگاری استفاده می‌شود.

توان با نماهای صحیح

عمل توان با نماهای صحیح تنها نیازمند جبر پایه‌است.

نماهای صحیح مثبت

ساده ترین نوع توان، با نماهای صحیح مثبت است. نما بیانگر این است که پایه چند بار باید در خود ضرب شود. برای مثال 35 = 3 × 3 × 3 × 3 × 3 = 243. در اینجا 3 پایه و 5 نما است، و 243 باب است با 3 به توان 5. عدد 3، 5 بار در عمل ضرب نشان داده می‌شود چون نما برابر 5 است.

به طور قراردادی، a2 = a×a را مربع، a3 = a×a×a را مکعب می‌نامیم. 32 «مربع سه» و 33 «مکعب سه» خوانده می‌شوند.

اولین توان را می‌توانیم به صورت a0 = 1 و سایر توان‌ها را به صورت an+1 = a·an بنویسیم.

نماهای صفر و یک

35 را می‌توان به صورت 1 × 3 × 3 × 3 × 3 × 3 هم نوشت، عدد یک را می‌توان چندین بار در عبارت مورد نظر ضرب کرد، زیرا در همل ضری عدد یک تفاوتی در جواب ایجاد نمی‌کند و همان جواب گذشته را می‌دهد. با این تعریف، می‌توانیم آن را در توان صفر و یک هم استفاده کنیم:

هر عدد به توان یک برابر خودش است.

a1 = a

هر عدد به توان صفر برابر یک است.

a0 = 1

(برخی نویسندگان 00 را تعریف نشده می‌خوانند.) برای مثال: a0= a2-2= a2/a2 = 1 (در صورتی که a ≠ 0)

نماهای صحیح منفی

اگر عددی غیرمنفی را به توان -1 برسانیم، حاصل برابر معکوس آن عدد است.

a−1 = 1/a

در نتیجه:

a−n = (an)−1 = 1/an

اگر صفر را به توان عددی منفی برسانیم، حاصل در مخرج صفر دارد و تعریف نشده‌است. توان منفی را می‌توان به صورت تقسیم مکرر پایه هم نشان داد. یعنی 3−5 = 1 ÷ 3 ÷ 3 ÷ 3 ÷ 3 ÷ 3 = 1/243 = 1/35.

خواص

مهمترین خاصیت توان با نماهای صحیح عبارتست از:

 

که از آن می‌توان عبارات زیر را نتیجه گرفت:

 

 

از آنجایی که جمع و ضرب خاصیت جابجایی دارند (برای مثال 2+3 = 5 = 3+2 و 2×3 = 6 = 3×2) توان دارای خاصیت جابجایی نیست: 23 = 8 است در حالی که 32 = 9. همچنین جمع و ضرب دارای خاصیت انجمنی هستند (برای مثال (2+3)+4 = 9 = 2+(3+4) و (2×3)×4 = 24 = 2×(3×4)) توان باز هم دارای این خاصیت نیست: 23 به توان چهار برابر است با 84 یا 4096، در حالی که 2 به توان 34 برابر است با 281 یا 2,417,851,639,229,258,349,412,352.

توان‌های ده

در سیستم مبنای ده، محاسبه توان‌های ده بسیار راحت است: برای مثال 106 برابر است با یک میلیون، که با قرار دادن 6 صفر در جلوی یک به دست می‌آید. توان با نمای ده بیشتر در علم فیزیک برای نشان دادن اعداد بسیار بزرگ یا بسیار کوچک به صورت نماد علمی کاربرد دارد؛ برای مثال 299792458 (سرعت نور با یکای مترمکعب بر ثانیه) را می‌توان به صورت 2.99792458 × 108 نوشت و به صورت تخمینی به شکل 2.998 × 108. پیشوندهای سیستم متریک هم برای نشان دادن اعداد بزرگ و کوچک استفاده می‌شوند و اصل این‌ها هم بر توان 10 استوار است. برای مثال پیشوند کیلو یعنی 103 = 1000، پس یک کیلومتر برابر 1000 متر است.

توان‌های عدد دو

توان‌های عدد دو نقش بسیار مهمی در علم رایانه دارند زیر در کامپیوتر مقادیر 2n را می‌توان برای یک متغیر n بیتی درنظر گرفت.

توان‌های منفی دو هم استفاده می‌شوند، و به دو توان اول نصف و ربع می‌گویند.

توان‌های عدد صفر

اگر توان صفر مثبت باشد، حاصل عبارت برابر خود صفر است: 0n = 0.

اگر توان صفر منفی باشد، حاصل عبارت 0−n تعریف نشده‌است، زیرا تقسیم بر صفر وجود ندارد.

اگر توان صفر عدد یک باشد، حاصل عبارت برابر یک است: 00 = 1.

(بعضی از نویسندگان می‌گویند که 00 تعریف نشده‌است.)


دانلود با لینک مستقیم


دانلود تحقیق درباره توان 10 ص