یاری فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

یاری فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود مقاله ترانسفورماتور سه فاز

اختصاصی از یاری فایل دانلود مقاله ترانسفورماتور سه فاز دانلود با لینک مستقیم و پر سرعت .

دانلود مقاله ترانسفورماتور سه فاز


دانلود مقاله ترانسفورماتور سه فاز

 

فرمت فایل:  ورد قابلیت ویرایش ) 

 


 
قسمتی از محتوی متن ...

 

تعداد صفحات : 20 صفحه

ترانسفورماتور سه فاز. مقدمه . قسمت اعظم انرژی الکتریکی مورد نیاز انسان در تمام کشورهای جهان ، توسط مراکز تولید مانند نیروگاههای بخاری ، آبی و هسته‌ای تولید می‌شود.
این مراکز دارای توربینها و آلترناتیوهای سه فاز هستند و ولتاژی که بوسیله ژنراتورها تولید می‌شود، باید تا میزانی که مقرون به صرفه باشد جهت انتقال بالا برده شود.
گاهی چندین مرکز تولید بوسیله شبکه‌ای به هم مرتبط می‌شوند تا انرژی الکتریکی مورد نیاز را بطور مداوم و به مقدار کافی در شهرها و نواحی مختلف توزیع کنند.
در محلهای توزیع برای اینکه ولتاژ قابل استفاده برای مصارف عمومی و کارخانجات باشد، باید ولتاژ پایین آورده شود.
این افزایش و کاهش ولتاژ توسط ترانسفورماتور انجام می‌شود.
بدیهی است توزیع انرژی بین تمام مصرف کننده‌های یک شهر از مرکز توزیع اصلی امکانپذیر نیست و مستلزم هزینه و افت ولتاژ زیادی خواهد بود.
لذا هر مرکز اصلی به چندین مرکز یا پست کوچکتر (پستهای داخل شهری) و هر پست نیز به چندین محل توزیع کوچکتر (پست منطقه‌ای) تقسیم می‌شود.
هر کدام از این مراکز به نوبه خود از ترانسهای توزیع و تبدیل ولتاژ استفاده می‌کنند.بطور کلی در خانواده و توزیع انرژی الکتریکی ، ترانسفورماتورها از ارکان و اعضای اصلی هستند و اهمیت آنها کمتر از خطوط انتقال و یا مولدهای نیرو نیست.
خوشبختانه به دلیل وجود حداقل وسایل دینامیکی در آنها کمتر با مشکل و آسیب پذیری روبرو هستند.
مسلما‌ این به آن معنی نیست که می‌توان از توجه به حفاظتها و سرویس و نگهداری آنها غفلت کرد.
در این مقاله نخست مختصری از تئوری و تعاریفی از انواع ترانسفورماتورها بیان می‌شود، سپس نقش ترانسفورماتورها در شبکه تولید و توزیع نیرو و در نهایت شرحی در مورد سرویس و تعمیر ترانسها ارائه می‌شود.
تئوری و تعاریفی از ترانسفورماتورها ترانسفورماتورها به زبان ساده و شکل اولیه وسیله‌ای است که تشکیل شده از دو مجموعه سیم پیچ اولیه و ثانویه که در میدان مغناطیسی و اطراف ورقه‌هایی از آهن مخصوص به نام هسته ترانسفورماتور قرار می‌گیرند.
مقره‌ها یا بوشینگها یا ایزولاتورها و بالاخره ظرف یا محفظه ترانسفورماتور.
کار ترانسفورماتورها بر اساس انتقال انرژی الکتریکی از سیستمی با یک ولتاژ و جریان معین به سیستم دیگری با ولتاژ و جریان دیگر است.
به عبارت دیگر ترانسفورماتور دستگاهی است استاتیکی که در یک میدان مغناطیسی جریان و فشار الکتریکی را بین دو سیم پیچ یا بیشتر با همان فرکانس و تغییر اندازه یکسان منتقل می‌کند.
انواع ترانسفورماتورها سازندگان و استانداردها در کشورهای مختلف هر یک به نحوی ترانسفورماتورها را تقسیم بندی کرده و تعاریفی برای درجه بندی آنها ارائه داده‌اند.
برخی ترانسها را بنا بر موارد و ترتیب بهره برداری آنها متفاوت شناخته‌اند، مانند ترانسهای انتقال قدرت ، اتو ترانس و یا ترانسهای تقویتی و گروهی از ترانسها را به غیر از ترانسفورماتور اینسترومنتی(ترانس جریان و ولتاژ) ، ترانس قدرت می‌نامند و اصطلاحا ترانس قدرت را آنهایی می‌دانند که در سمت ثانویه آنها فشار الکتریکی تولید می‌شود.این نوع تقسیم بندی در عمل دامنه وسیعی را در بر می‌گیرد که در یک طرف آن ترانسفورماتورهای کوچک و قابل حمل با ولتاژ

  متن بالا فقط قسمتی از محتوی متن مقاله میباشد،شما بعد از پرداخت آنلاین ، فایل را فورا دانلود نمایید 

«توجه» فروش این مقاله به صورت محدود میباشد بعد از اولین خرید به قیمت آن اضافه خواهد شد «توجه»


  لطفا به نکات زیر در هنگام خرید دانلود پاورپوینت:  توجه فرمایید.

  • بعد از اولین خرید به صورت نزولی به قیمت آن اضافه میگردد.
  • در صورتی که مایل به دریافت فایل ( صحیح بودن ) و کامل بودن آن قبل از خرید هستید، می توانید با پشتیبانی تماس حاصل فرمایید
  • پس از پرداخت هزینه ،ارسال آنی مقاله خرید شده ، به ادرس ایمیل شما و لینک دانلود فایل برای شما نمایش داده خواهد شد
  • در صورت  مشاهده  بهم ریختگی احتمالی در متون بالا ،دلیل آن کپی کردن این مطالب از داخل مقاله ها میباشد ودر فایل اصلی،به هیچ وجه بهم ریختگی وجود ندارد.
  • هدف فروشگاه استاد فایل کمک به سیستم آموزشی و رفاه دانشجویان و علم آموزان میهن عزیزمان میباشد. 


«توجه» فروش این مقاله به صورت محدود میباشد بعد از اولین خرید به قیمت آن اضافه خواهد شد «توجه»

دانلود فایل  پرداخت آنلاین 


دانلود با لینک مستقیم


دانلود مقاله ترانسفورماتور سه فاز

دانلود تحقیق ترانسفورماتور 2

اختصاصی از یاری فایل دانلود تحقیق ترانسفورماتور 2 دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق ترانسفورماتور 2


دانلود تحقیق ترانسفورماتور 2

فرمت فایل:  ورد ( قابلیت ویرایش ) 


قسمتی از محتوی متن ...

 

تعداد صفحات : 22 صفحه

مشخصات ترانسفورماتور هسته هسته ترانسفورماتور از ورق الکتریکی به ضخامت 3/0 میلیمتر که در عرض‌های مختلف بریده شده، تشکیل می‌شود که در نهایت پس از چیدن، دارای سطح تقریباً دایره‌ای شکل می‌گردد.
به منظور کاهش تلفات آهن، محل اتصال ورق‌ها به یکدیگر دارای زاویه 45 درجه می‌باشد و اتصال به صورت فاق و زبانه انجام می‌گیرد.
شکل 1: هسته سیم‌پیچ‌ها کلیه ترانسفورماتورهای توزیع دارای دو سیم‌پیچ (فشار ضعیف و فشار قوی) می‌باشند که در ابعاد مختلف به شرح زیر پیچیده می‌شوند: سیم‌پیچ‌های فشار ضعیف از سیم تخت با عایق کاغذی به صورت سیم‌پیچ استوانه‌ای تولید می‌گردند.
سیم‌پیچ‌های فشار قوی از سیم گرد و یا تخت به صورت‌های ذیل تولید می‌گردند: تا قدرت 250 کیلوولت آمپر از سیم گرد با عایق لاکی به صورت سیم‌پیچ لایه‌ای؛ از قدرت 315 تا 1000 کیلوولت آمپر از سیم گرد با عایق کاغذی و یا عایق لاکی بصورت کلافی و مرکب از قرارگیری کلاف‌های متعدد بر روی هم؛ از قدرت 1250 کیلوولت آمپر به بالا به صورت فوق و همچنین از سیم تخت با عایق کاغذی بصورت بشقابی مرکب از قرارگیری بشقاب‌های متعدد بر روی هم؛ همچنین جهت هدایت دمای حاصله (ناشی از تلفات مس) به خارج جلوگیری از تمرکز و ازدیاد دما در داخل سیم‌پیچ‌ها بر حسب مدل، کانال‌هایی موازی با محور یا عمود بر محور پیش‌بینی می‌شود.
شکل 2: بوبین (سیم‌پیچ‌ها) مواد عایقی عایق‌بندی ترانسفورماتور توسط مرغوب‌ترین مواد عایق مانند: کاغذ عایق، مقوای عایق و فیبر عایق صورت می‌گیرد.
رطوبت هوای محیط که به مرور در مواد عایقی راه می‌یابد، توسط کوره‌های خشک کننده تحت خلاء، جدا می‌گرد، بطوری که مواد عایقی موجود ترانسفورماتور کاملاً خشک و عاری از رطوبت می‌باشند.
انشعابات سیم‌پیچ و قابلیت تنظیم ولتاژ تغییراتی جزئی ولتاژ شبکه را می‌توان با تغییر نقاط اتصال سیم‌پیچ فشار قوی برطرف نمود، به نحوی که ولتاژ مورد نیاز مصرف کننده ثابت بماند.
تغییر دادن نقاط اتصال و استفاده از انشعابات سیم‌پیچ فشار قوی در حالت «بدون بار» توسط کلید تنظیم ولتاژ صورت می‌گیرد.
محدوده تغییرات ولتاژ در ترانسفورماتورهای ایران ترانسفو، ترانسفورماتور صنعت ری و ترانسفورماتورسازی کوشکن: ترانسفورماتورهای 11 و 33 کیلوولتی %5/2×2±؛ ترانسفورماتورهای 20 کیلوولتی تا قدرت 2000 کیلوولت آمپر%4±.
تنظیم و تغییر ولتاژ در طرف فشار ضعیف به ندرت صورت می‌گیرد.
بطور عموم، ترانسفورماتورهای استاندارد شرکت‌های سازنده ایران ترانسفو، صنعت ری و کوشکن در طرف فشار ضعیف و در حالت بی‌باری دارای 400 ولت (سه فاز) و 231 ولت (تک فاز) می‌باشند.
مشخصات مورد لزوم جهت انشعابات و حالات مختلف کلید تنظیم ولتاژ روی پلاک مشخصات، منعکس و قابل استفاده است.
مخزن ترانسفورماتورها با توجه به قدرت، گرمای حاصله و استحکام مکانیکی مورد لزوم دارای مخازنی از نوع ورق صاف،‌ کنگره‌ای و یا رادیاتوری می‌باشند.
کف مخزن محکم‌تر از سایر نقاط آن ساخته شده و شاسی مجهز به چرخ‌های انتقال به آن جوش داده می‌شود.
در قسمت پایین مخزن شیر تخلیه روغن نصب گردیده است.
همچنین دو پیچ M12 یکی در پایین و دیگری روی درب مخزن جهت اتصال زمین وجود دارد.
مقره‌های فشار قوی و فشار ضعیف ترانسفورمات

متن بالا فقط تکه هایی از متن به صورت نمونه در این صفحه درج شده است.شما بعد از پرداخت آنلاین فایل را فورا دانلود نمایید

بعد از پرداخت ، لینک دانلود را دریافت می کنید و ۱ لینک هم برای ایمیل شما به صورت اتوماتیک ارسال خواهد شد.


دانلود با لینک مستقیم


دانلود تحقیق ترانسفورماتور 2

تحقیق و بررسی در مورد ترانسفورماتور 1000 کیلوولت

اختصاصی از یاری فایل تحقیق و بررسی در مورد ترانسفورماتور 1000 کیلوولت دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 12

 

 ترانسفورماتور 1000 کیلوولت

با روند رو به رشد مصرف انرژی الکتریکی در قرن بیست و یکم ، شرکت برق توکیو (TEPCO) تصمیم به توسعه شبکه انتقال 1000 کیلوولت داشته و لذا در حال حاضر مشغول آزمایش های میدانی تجهیزات 1000 کیلوولت در پست (شین هارونا) می باشد. در این راستا برای تامین تجهیزات مورد نیاز سیستم قدرت 1000 کیلوولت با همکاری شرکت میتسوبیشی الکتریک ( کارخانه آکو ) یک اتو ترانسفورماتور تکفاز نوع shell یا زرهی با تنظیم کننده ولتاژ تحت بار (LVR) طراحی و ساخته شده که در متن حاضر به معرفی مشخصات ، ساختمان، آزمایش ها و چگونگی حمل و نقل آن پرداخته می شود. در حالت سه فاز ظرفیت سیم پیچ های اولیه و ثانویه 3000 مگاولت آمپر و ظرفیت سیم پیچ ثانویه آن دارای ظرفیت 1200 مگاولت آمپر می باشد که برای تامین بار راکتیو مورد نیاز خطوط 1000 کیلوولت در نظر گرفته شده است . برای اینکه در حین اتصال کوتاه با جریان های شدیدی درگیر نباشیم و تجهیزات منصوبه غیر عادی نباشند به جای اینکه همانند ترانسفورماتور 500 کیلوولت سمت ثالثیه را 63 کیلوولت انتخاب کنیم ، از سطح ولتاژ 147 کیلوولت استفاده می کنیم. برای این ترانس امپدانس درصد، 18 درصد انتخاب شده است، که از یک طرف ماکزیمم پایداری را برای شبکه ایجاد نماید و از طرف دیگر جریان اتصال کوتاه محدود میشود و در نهایت یک طرح اقتصادی برای ترانسفورماتور انتخاب شده است . این ترانسفورماتور دارای 27 تپ در بازه های ولتاژ خط 6/1136 کیلوولت تا 6/986 کیلوولت بوده و برای بررسی قدرت عایقی آن در برابر اضافه ولتاژهای گذرا، آزمایش های ولتاژ ایستادگی در فرکانس قدرت با شرایط و آزمایش ولتاژ ایستادگی(در اولیه 1950 کیلوولت و در ثانویه 1300 کیلوولت) انجام شده است. در آزمایشهای بالا E ولتاژ فازی معادل     می باشد. برای رعایت شرایط زیست محیطی سطح صدای قابل قبول 65 دسی بل برای آن در نظر گرفته شده که برای کنترل این سطح از صفحات چند صدای فلزی در ترانسفورماتور استفاده شده است خنک سازی این ترانسفورماتور با روغن و هوای تحت فشار انجام می گیرد. از آنجا که هر ترانسفورماتور 1000 کیلوولت هم از نظر ولتاژ و هم از نظر ظرفیت معادل دو برابر ترانسفورماتور 500 کیلوولت میباشد و از طرفی بیشتر سیستم های حمل و نقل ریلی و دریائی و یا فضایی در حد یک ترانس 500 کیلوولت میباشند ، لذا این ترانس به دو واحد که هر واحد ظرفیت و حجم یک ترانس 500 کیلوولت را دارد تقسیم می شود. در ترانس تهیه شده هر واحد در حالت تکفاز ظرفیت 3/1500 مگاولت آمپر و هر کدام تنظیم کننده ولتاژ جداگانه داشته و در محل نصب این دو واحد از طریق یک داکت T شکل با بوشینگ روغن – گاز با هم موازی می شوند. برای کاهش عایق ها و در نتیجه کاهش حجم ترانسفورماتور طراحی سیم پیچی و عایق ها باید به گونه ای باشد که شدت میدان الکتریکی تا حد ممکن کاهش یافته و درجه خلوص روغن ترانس نیز تا حد ممکن بالا باشد. برای بارگیری در کشتی، متعلقات هر ترانسفورمرز نظیر واحدهای خنک کنندگی و سایر بخش های آن جدا شده و در فضایی با طول 8 متر ، عرض 3 متر و ارتفاع 4 متر قرار داده می شوند. عموما بارگیری به گونه ای است که برای مسافت های طولانی در حد 1000 کیلومتر هیچگونه آسیبی به واحد نرسد.

در محل نصب ترانسفورماتور در پست، هر دو واحد جداگانه برروی یک قاب فلزی برروی زمین بسته شده و سپس از طریق داکت T شکل به همدیگر وصل می شوند تا یک ترانس تکفاز 1000 کیلوولت را تشکیل دهند. سپس این ترانس تکفاز تحت آزمایش کارآگاهی نسبت تبدیل ، مقاومت ، امپدانس سیم پیچها و مقاومت عایقی قرار می گیرد. اولیه و ثانویه و ثالثیه ترانس تکفاز 1000 کیلوولت از طریق اتصال گازی ( SF6 ) متصل می گردند. سپس با استفاده از سه ترانس تکفاز ، بانک ترانس های سه فازی ایجاد می کنند. در نهایت این ترانس سه فاز تحت آزمایش های تضمین سیستم خنک کنندگی ، آزمایش جریان هجومی، تعیین جریان نشتی قرار می گیرند. این آزمایشات برای یک دوره دو ساله انجام می شود.

    نظرات دیگران ( 0 )

 + مدارهای کنترل کنتاکتور

نویسنده: حمیدرضا ا یرا نمنش پا ریزی

سه‏شنبه 26/2/1385 ساعت 1:49 عصر

مدارهای کنترل وراه اندازی به دو قسمت تقسم میشوند:الف :مدارهای قدرت:که مانند یک کلید سه فاز جریان سه فاز را به مصرف کننده میرسانند.ب)مدارهای فرمان:این مدار هیچ رابطه ای با مدار قدرت ندارد و به وسیله آن بوبین کنتاکتور را تحریک میکنند تا کنتاکتور به حالت وصل یا قطع در آید


دانلود با لینک مستقیم


تحقیق و بررسی در مورد ترانسفورماتور 1000 کیلوولت

تحقیق و بررسی در مورد ترانسفورماتور 14 ص

اختصاصی از یاری فایل تحقیق و بررسی در مورد ترانسفورماتور 14 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 13

 

بسم الله الرحمن الرحیم

عنوان:

ترانسفورماتور

تقدیم به استاد:

جناب آقای توسلی

ارائه کنندگان:

سعید نیازی دوست

احسان سبز واری

زمستان 88

ساختمان ترانسفورماتور

 

ترانسفورماتورها را با توجه به کاربرد و خصوصیات آنها، می توان به سه دسته کوچک متوسط و بزرگ دسته بندی کرد. ساختن ترانسفورماتورهای بزرگ و متوسط به دلیل مسایل حفاظتی و عایق بندی و امکانات موجود ، کار ساده ای نیست ولی ترانسفورماتورهای کوچک را می توان بررسی و یا ساخت. برای ساختن ترانسفورماتورهای کوچک ، اجزای آن مانند ورقه آهن ، سیم و قرقره را به سادگی می توان تهیه نمود.

 اجزای تشکیل دهنده یک ترانسفورماتور به شرح زیر است؛

هسته ترانسفورماتور:

   هسته ترانسفورماتور متشکل از ورقه های نازک است که سطح آنها با توجه به قدرت ترانسفورماتور ها محاسبه می شود. برای کم کردن تلفات آهنی هسته ترانسفورماتور را نمی توان به طور یکپارچه ساخت. بلکه معمولا آنها را از ورقه های نازک فلزی که نسبت به یکدیگر عایق‌اند، می سازند. این ورقه ها از آهن بدون پسماند با آلیاژی از سیلیسیم (حداکثر 4.5 درصد) که دارای قابلیت هدایت الکتریکی کم و قابلیت هدایت مغناطیسی زیاد است ساخته می شوند. در اثر زیاد شدن مقدار سیلیسیم ، ورقه‌های دینام شکننده می شود. برای عایق کردن ورقهای ترانسفورماتور ، قبلا از یک کاغذ نازک مخصوص که در یک سمت این ورقه چسبانده می شود، استفاده می کردند اما امروزه بدین منظور در هنگام ساختن و نورد این ورقه ها یک لایه نازک اکسید فسفات یا سیلیکات به ضخامت 2 تا 20 میکرون به عنوان عایق در روی آنها می مالند و با آنها روی ورقه ها را می پوشانند. علاوه بر این ، از لاک مخصوص نیز برای عایق کردن یک طرف ورقه ها استفاده می شود ورقه های ترانسفورماتور دارای یک لایه عایق هستند. بنابراین ، در مواقع محاسبه سطح مقطع هسته باید سطح آهن خالص را منظور کرد. ورقه‌های ترانسفورماتورها را به ضخامت های 0.35 و  0.5 میلیمتر و در اندازه های استاندارد می سازند. باید دقت کرد که سطح عایق شده ى ورقه های ترانسفورماتور همگی در یک جهت باشند (مثلا همه به طرف بالا) علاوه بر این تا حد امکان نباید در داخل قرقره فضای خالی باقی بماند. لازم به ذکر است ورقه ها با فشار داخل قرقره جای بگیرند تا از ارتعاش و صدا کردن آنها نیز جلوگیری شود.

  سیم پیچ ترانسفورماتور :

   معمولا برای سیم پیچ اولیه و ثانویه ترانسفورماتور از هادی های مسی با عایق (روپوش) لاکی استفاده می‌کنند. اینها با سطح مقطع گرد و اندازه‌های استاندارد وجود دارند و با قطر مشخص می‌شوند. در ترانسفورماتورهای پرقدرت از هادیهای مسی که به صورت تسمه هستند استفاده می‌شوند و ابعاد این گونه هادیها نیز استاندارد است.

   توزیع سیم پیچی ترانسفورماتور به این ترتیب است که سر سیم پیچ‌ها را به وسیله روکش عایقها از سوراخهای قرقره خارج کرده، تا بدین ترتیب سیم ها قطع (خصوصا در سیمهای نازک و لایه‌های اول) یا زخمی نشوند. علاوه بر این بهتر است رنگ روکش‌ها نیز متفاوت باشد تا در ترانسفورماتورهای دارای چندین سیم پیچ ، به راحتی بتوان سر هر سیم پیچ را مشخص کرد. بعد از اتمام سیم پیچی یا تعمیر سیم پیچهای ترانسفورماتور باید آنها را با ولتاژهای نامی خودشان برای کنترل و کسب اطمینان از سالم بودن عایق بدنه و سیم پیچ اولیه ، بدنه و سیم پیچ ثانویه و سیم پیچ اولیه آزمایش کرد.


دانلود با لینک مستقیم


تحقیق و بررسی در مورد ترانسفورماتور 14 ص

تحقیق و بررسی در مورد ترانسفورماتور (4)

اختصاصی از یاری فایل تحقیق و بررسی در مورد ترانسفورماتور (4) دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 7

 

ترانسفورماتورهای جریان و ولتاژ جدید

ترانسفورماتورهای ولتاژ و جریان مطرح شده در بخش های قبل همگی مبتنی بر اصول الکترومغناطیسی و استفاده از هسته ی مغناطیسی می باشند . هم اکنون روش های زیادی جهت انتقال کمیت اندازه گیری شده با استفاده از تجهیزات نوری تدوین شده اند .

ترانسفورماتور و جریان و ولتاژ نوری

دیاگرام شکل 4-12 خصوصیات اصلی و دیاگرام عملکردی یک ترانسدیوسر نوری را نمایش می دهد . مبدل های نوری و کانال های فیبر نوری ارتباط میان حسگر و خروجی فشار ضعیف برقرار می سازند . تفاوت بنیانی میان ترانسدیوسرها و ترانسفورماتورهای اندازه گیری متداول , نیاز به یک واسط الکترونیکی جهت عملکرد آنها می باشد . این واسط جهت انجام وظیفه ی حسگری و تطابق فناوری جدید حسگر با جریان ها و ولتاژهای ثانویه مورد نیاز می باشد .

ترانسفورماتور ولتاژ با جریان

ترانسدیوسرهای نوری غیرمتعارف خود در ادوات کوچک تر و سبک تر قابل استفاده می باشند . اندازه ی کلی و توان نامی مورد نیاز این ادوات تاثیر قابل توجهی بر روی اندازه و پیچیدگی حسگر ندارد . انکان دارد که ساختارهای عایقی کوچک و سبکی جهت نگهداری تجهیزات حسگر به عنوان جزئی از یک عایق تعبیه شوند . به علاوه , در این جا مسائل مربوط به اثرات غیر خطی و تداخل الکترومغناطیسی در سیم پیچ ثانویه ی ترانسفورماتورهای ولتاژ و جریان متداول به حداقل می رسد .

ترانسدیوسرهای نوری را می توان به دو گروه تقسیم کرد . گروه اول ترانسدیوسرهای هیبرید که در آنها مدارهای الکتریکی متداولی که با مبدل های نوری مختلف در ارتباط می باشند , مورد استفاده قرار گرفته اند . گروه دوم ترانسدیوسرهای کاملا نوری می باشند که بر اساس اصول پایه ای حسگرهای نوری پایه ریزی شده اند .

مفاهیم حسگر نوری

رسانه های حساس به نور خاصی ( شیشه , بلورها و پلاستیک ) نسبت به میدان های الکتریکی و مغناطیسی از خود حساسیت نشان می دهند . به گونه ای که بعضی خصوصیات پرتو نور هنگامی که از داخل آنها عبور می کند , تحت تاثیر قرار می گیرد . اجزای یک ترانسدیوسر نوری ساده در شکل 4-13 نمایش داده شده اند .

حالتی در نظر گرفته شود که پرتو نور از دو فیلتر پلاریزه کننده عبور می کند . در صورتی که محور فیلترهای پلاریزه کننده ی ورودی و خروجی نسبت به هم 45 درجه اختلاف داشته باشند , تنها نیمی از نور عبور خواهد کرد . شدت نور ورودی مرجع در تمامی زمان ها ثابت می باشد . حال اگر این دو فیلتر ثابت مانده و یک فیلتر پلاریزه کننده ی سوم میان آنها اضافه گردد , یک گردش اتفاقی پلاریزه کننده ی میانی در جهت ساعت گرد یا پاد ساعت گرد متناسب با شدت میدان صورت می پذیرد . به این ترتیب شدت پرتو نور خروجی متناسب با شدت میدان مدوله می شود .

هنگامی که یک ماده ی حساس به نور ( شیشه یا بلور ) در معرض یک میدان مغناطیسی یا الکتریکی متغیر قرار می گیرد , نقش پلاریزه کننده ی فرد را ایفا می کند . تغییرات میدان مغناطیسی با الکتریکی که حسگر نوری در معرض آنها می باشد , به صورت تغییرات شدت پرتو نور ورودی که به آشکارساز نوری می رسد , مورد پایش قرار می گیرد . شدت نور خروجی حول سطح شدت میدان صفر که برابر 50 درصد شدت نور ورودی مرجع است , نوسان می کند . در انتها , شدت نور مدوله شده با توجه به حضور میدان های متغیر , دوباره به جریان ها با ولتاژهای متغیر تبدیل می گردد .

ترانسدیوسرها از حسگر اثر مغناطیسی _ نوری جهت اندازه گیری نوری جریان استفاده می کنند . این امر نشان می دهد که حسگر اساساً به جریان حساس نمی باشد بلکه نسبت به میدان مغناطیسی تولید شده توسط جریان حساسیت نشان می دهد . هر چند که تجهیزات کلاماً نوری قابل دسترس می باشند , اکثر ترانسدیوسرهای جریانی تجاری در دسترس بر اساس حسگر شیشه ای عمل می کنند . از سوی دیگر اکثر ترانسدیوسرهای ولتاژی دارای حسگرهای الکتریکی – نوری می باشند . این امر بیانگر این حقیقت است که حسگر مورد استفاده به میدان القاء شده حساس می باشد .

ترانسدیوسرهای هیبرید

ترانسدیوسرهای هیبرید جدید را می توان به دو نوع تقسیم کرد . ترانسدیوسرهایی که دارای حسگرهای فعال و آنهایی که دارای حسگرهای غیرفعال می باشند . اصل عملکردی ترانسدیوسرهای دارای حسگر فعال , تبدیل خروجی ترانسفورماتور اندازه گیری متداول موجود به یک خروجی نوری ایزوله با استفاده از یک سیستم مبدل نوری می باشد . ممکن است که این سیستم تبدیل , نیاز به منبع تغذیه داشته باشد , از این رو به آن حسگر فعال اطلاق می شود . استفاده از یک سیستم ایزوله کننده ی نوری موجب مجزا شدن جریان ها و ولتاژهای خروجی ثانویه ی ترانسفورماتورهای اندازه گیری می گردد . از این رو ارتباط میان اتاق کنترل و تجهیزات کلید زنی تنها از طریق یک کابل نوری برقرار می گردد .

ترانسدیوسرهای کاملاً نوری

این ترانسفورماتورهای اندازه گیری کاملاً مبتنی بر مواد حساس به نور ساخته شده اند و کاملاً غیرفعال می باشند . عمل حس کردن به صورت مستقیم از طریق ماده ای حساس به نور و یک کابل نوری به دست می آید . این کابل میان واحد اصلی و موقعیت نصب حسگر قرار گرفته و ارتباط مخابراتی را فراهم می کند .

عنصر حس کننده از جنس مواد حساس به نور بوده که در داخل میدان الکتریکی یا مغناطیسی مورد اندازه گیری قرار می گیرد . در مورد تجهیزات اندازه گیری جریان , عنصر حساس حتی به طور آزادانه در داخل میدان مغناطیسی قرار می گیرد . این عنصر را می توان در داخل فاصله ی هوایی هسته ی مغناطیسی نیز قرار دارد . در مورد تجهیزات اندازه گیری ولتاژ گزینه های مشابهی وجود دارند . با این تفاوت که در این جا حسگر نسبت به میدان های الکتریکی حساس می باشد . امکان ترکیب هر دو حسگر در داخل یک محفظه وجود دارد . به این ترتیب ترانسفورماتورهای ولتاژ و جریان در داخل یک محفظه تعبیه می شوند , که موجب صرفه جویی در فضا در داخل پست می گردد .

در تمامی حالات یک فیبر نوری عهده دار انتقال نور مرجع از منبع به واسط و فیبر نوری دیگر عهده دار انتقال نور انعکاسی به مدار تحلیل کننده می باشد . برخلاف ترانسفورماتورهای اندازه گیری متدال مستقل , ترانسفورماتورهای اندازه گیری نوری نیازمند یک واسط الکتریکی جهت عملکرد خود می باشند . از این رو حسگر این نوع ترانسدیوسرها (مواد حساس به نور) غیرفعال می باشد . با این وجود صحت عملکرد آنها منوط به واسطی است که در اتاق کنترل تغذیه می شود .

سیستم های حسگر دیگر

سیستم های دیگر ی نیز جهت اندازه گیری ولتاژ و جریان خطوط مطرح شده اند که در این جا معرفی می شوند .

ترانسفورماتور جریان با شار صفر ( اثر هال )

در این حالت عنصر حس کننده یک ویفر نیمه هادی که در داخل فاصله ی هوایی یک هسته ی مغناطیسی قرار داده شده است . این نوع ترانسفورماتورها نسبت به جریان های مستقیم نیز حساس می باشند . این ترانسفورماتور نیازمند یک منبع تغذیه است که از طریق خط با منبع تغذیه ی جداگانه ای تغذیه می شود . معمولاً حداقل جریان قابل اندازه گیری در این ترانسفورماتور برابر 1/0 درصد جریان نامی می باشد . در ساده ترین حالت , ولتاژ ایجاد شده توسط اثر هال به طور مستقیم با جریان مغناطیسی مورد اندازه گیری متناسب می باشد . در کاربردهای دقیق تر و حساس تر , جریان از طریق یک ثانویه , سیم پیچ با چند دور , تامین می گردد که در اطراف حلقه ی مغناطیسی جهت متعادل کردن میدان مغناطیسی فاصله ی هوایی قرار گرفته است . با استفاده از این تجهیزات , امکان اندازه گیری بسیار دقیق جریان های مستقیم و با فرکانس بالا فراهم می آید .

حسگر هیبرید مغناطیسی _ نوری

این نوع از ترانسفورماتورها اغلب در مورد خطوط انتقال بلند جبران سازی شده توسط خازن سری مورد استفاده قرار می گیرند در این مورد نیاز به اندازه گیری جریان زمین نشده وجود دارد . در این حالت تعدادی حسگر جریان بر روی هر فاز مورد نیاز می باشد تا حفاظت در مقابل موج های ضربه ای خازن و تعادل را فراهم کنند . راه حل ترجیحی استفاده از ترانسفورماتورهای دارای هسته ی مغناطیسی به شکل نوروئید که به سیستم های ایزوله کننده ی فیبر نوری متصل شده اند , می باشد . این حسگرها معمولاً از نوع فعال می باشند زیرا که سیستم ایزوله کننده نیاز به منبع تغذیه دارد . این ترانسفورماتور در شکل 4-17 نشان داده شده است .

سیم پیچ های روگوسکی

سیم پیچ روگوسکی براساس ترانسفورماتور دارای هسته ی هوایی با امپدانس بسیار بالا طراحی شده است . سیم پیچ ثانویه بر روی تروئیدی از جنس عایق پیچیده می شود . در اغلب موارد سیم پیچ روگوسکی به یک تقویت کننده متصل می گردد . این امر به دلیل فراهم آوردن انرژی کافی جهت تجهیزات حفاظتی و اندازه گیری متصل شده و تطبیق امپدانس ورودی این دستگاه می باشد . سیم پیچ روگوسکی نیازمند یک پارچه سازی میدان مغناطیسی است که در نتیجه دارای تاخیر زمان و فاز به علت انجام این یک پارچه سازی می باشد . این خطا را می توان در داخل رله ی دیجیتال تصحیح کرد .

به نقل از سایت www.farbod.info (http://www.farbod.info)

ادامه دارد ...

--------------------------------------------------------------------------------

Farbod.E9 January 2007, 07:35 PM

هدف از این استاندارد , ارائه معیارهای مهندسی جهت انتخاب ترانسفورماتور جریان در پستهای 230 و 400 کیلو ولت می باشد , بطوریکه مشخصات آن به صورت بهینه تعیین می گردد .

دامنه کاربرد

این استاندارد , تنها در ارتباط با ترانسفورماتورهای جریان از نوع روغنی می باشد .

نیازها و خواسته ها

کلیات

ترانسفورماتورهای جریان تبدیل جریانهای با دامنه زیاد به جریانهائی که به راحتی و یا مصرف انرژی ناچیز (تلفات اندک) با دستگاههای اندازه گیری فشار ضعیف قابل اندازه گیری است بکار می روند . ترانسفورماتورهای جریان در کلیه شرایط عادی و غیرعادی به شبکه متصل هستند . بنابراین اثرات تمامی موارد مربوط به شرایط فوق نباید سبب خرابی یا عدم دقت آنها شود . ترانسفورماتورهای جریان باید قابلیت تحمل جریان اتصالی و دقت مناسب را در حالت گذرا ( به استثنا’ ترانسفورماتورهای جریان اندازه گیری که دقت آن را در شرایط خطا تضمین نمی گردد ) داشته باشند .

از اولیه ترانسفورماتور جریان در شرایط عادی شبکه جریان کاری شبکه عبور می کند و جریان ثانویه از نظر اندازه دامنه درصدی از جریان اولیه و هم فاز با اولیه می باشد که البته در حالت غیرایده آل , خطای ترانسفورماتور سبب می گردد که چنین نباشد .

ترانسفورماتور جریان در شبکه قدرت به دو منظور عمده بکار می رود :

1- اندازه گیری جریان به منظور اندازه گیری توان عبوری از یک نقطه و اطلاع از وضعیت شبکه از لحاظ عبور جریان در آن نقطه . در این حالت به ترانسفورماتور جریان, ترانسفورماتور اندازه گیری گفته شده که به دستگاه های انازه گیری وصل می شود و آنچه که در این حالت بیشتر مورد نظر است , شرایط عادی شبکه است و نیازی به دقت در شرایط غیرعادی از قبیل اتصال کوتاه و غیره نمی باشد .

2- استفاده از ترانسفورماتور جریان برای تبدیل جریان در شرایط غیرعادی شبکه برای حفاظت شبکه که به آن ترانسفورماتور جریان حفاظتی گفته شده و به رله های حفاظتی وصل می گردد . لذا دقت تبعیت جریان ثانویه از اولیه این ترانسفورماتورها در جریانهای زیاد ( هنگام بروز عیب ) دارای اهمیت بسیار می باشد .

ضمناً یکی از وظایف اساسی و مهم ترانسفورماتورهای جریان , ایزوله و جدا نمودن ولتاژ فشار قوی اولیه از دستگاه های قابل دسترسی طرف ثانویه ( دستگاه های اندازه گیری و رله های حفاظتی و ... ) است .

نیازهای کلی

ترانسفورماتورهای جریان بایستی نیازهای زیر را برآورده نمایند :

بطور پیوسته بتوانند ولتاژ و جریان نامی اولیه را بدون ایجاد حرارت اضافی و شکست عایقی تحمل نمایند .

ترانسفورماتورهای جریان حفاظتی بایستی در حالت اضافه جریان در اثر بروز عیب در شبکه با دقت خوبی عمل تبدیل را انجام دهند .

در زمان اتصال کوتاه , ترانسفورماتورهای جریان اندازه گیری باید به اشباع رفته تا جریان در آنها محدود شود و بدستگاه اندازه گیری آسیبی نرسد .

ترانسفورماتورهای جریان به دلیل نقش اساسی که در تغذیه و نهایتاً عملکرد صحیح سیستمهای اندازه گیری و حفاظت دارند از اهمیت ویژه ای نسبت به سایر تجهیزات فشار قوی برخوردار می باشند . از این رو انتخاب درست و صحیح مشخصات آنها دقت خاصی را طلب می کند .

عوامل مهمی که برای انتخاب یا مقایسه ترانسفورماتورهای جریان , موثر و لازم است عبارتند از :

- مشخصات شبکه و سیستمی که ترانسفورماتور جریان به آن متصل می گردد .

- شرایط محیطی و اقلیمی محلی که ترانسفورماتور جریان در آن نصب می شود .

- مشخصه های فنی , پارامترها و شاخص های مورد نیاز جهت انتخاب ترانسفورماتور جریان .

اطلاعات مورد نیاز جهت طراحی

مشخصات و ویژگیهای شبکه و سیستمی که ترانسفورماتور جریان در آن نصب و مورد بهره برداری قرار می گیرد

ترانسفورماتورهای جریان بایستی اضافه ولتاژها و اضافه جریانها را در مدت زمان مورد نظر تحمل نمایند . همچنین افزایش درجه حرارت در آنها در شرایط نامی ولتاژ و جریان شبکه , نباید از حد مجاز تعیین شده تجاوز نماید . همه موارد فوق بستگی به مقادیر نامی شبکه مورد مطالعه دارند لذا در هنگام انتخاب ترانسفورماتور جریان داده های زیر بایستی دقیقاً مورد توجه قرار گیرند :

- ولتاژ نامی

- حداکثر ولتاژ سیستم

- سطح اتصال کوتاه

- فرکانس نامی

- نحوه زمین کردن نوترال

مشخصات محیطی و شرایط اقلیمی منطقه و محلی که ترانسفورماتورهای جریان در آن مورد استفاده قرار می گیرد .

شرایط محیطی یکی از پارامترهای مهم در انتخاب ترانسفورماتورهای جریان می باشد که در زیر به آن تعداد که در ساخت و یا در انتخاب نقش موثری دارند اشراه می شود :

- ارتفاع محل نصب از سطح دریا

- حداکثر درجه حرارت محیط

- حداقل درجه حرارت محیط

- متوسط درجه حرارت روزانه محیط

- میزان و نوع آلودگی

- درصد میزان رطوبت

- شتاب زلزله

- سرعت باد

- سایر شرایط غیرمعمول نظیر بخاز آب , دود , گازهای قابل اشتعال , گرد و خاک غیرمعمول و نمک و خوردگی های غیرعادی و غیره .

از آنجائی که کلیه تجهیزات نصب شده پست در وضعیت مشابهی از نظر محیط مورد بهره برداری قرار می گیرند لذا جهت هماهنگی لازم به گزارش بررسی و طبقه بندی شرایط اقلمی , جلد شماره 102 این استاندارد رجوع شود .

شاخص ها و پارامترهای مشخص کننده طراحی

پارامترها و شاخصهایی که به منظور انتخاب نوع مناسب ترانسفورماتور جریان جهت کاربرد خاص آن بایستی تعیین شود به شرح زیر می باشند :


دانلود با لینک مستقیم


تحقیق و بررسی در مورد ترانسفورماتور (4)