یاری فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

یاری فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

تحقیق افت اصطکاکی در لوله ها

اختصاصی از یاری فایل تحقیق افت اصطکاکی در لوله ها دانلود با لینک مستقیم و پر سرعت .

تحقیق افت اصطکاکی در لوله ها


تحقیق افت اصطکاکی در لوله ها

فرمت فایل:  Image result for word ( قابلیت ویرایش و آماده چاپ

حجم فایل:  (در قسمت پایین صفحه درج شده )

تعداد صفحات فایل: 10

کد محصول : 001Shop

فروشگاه کتاب : مرجع فایل 


 

 قسمتی از محتوای متن 

 

هدف آزمایش

هدف از این آزمایش بررسی قوانین موجود در مورد مقاومت اصطکاکی بر حسب نوع جریان و بدست آوردن عدد رینولدز و مقدار بحرانی آن برای تشخیص نوع جریان می‌باشد. به کار بردن جریان لایه‌ای به منظور محاسبه ضریب اصطکاک در رژیم ‌های جریان لایه‌ای و آشفته از دیگر مسائل این آزمایش است.

 

شرح دستگاه آزمایش

یک مخزن با هد ثابت که در ارتفاع نصب شده است و لوله افقی که دارای چهار سوراخ نزدیک به دو انتهای آن می باشد.

از سوراخ ها برای اتصال به مانومترها استفاده می شود. مانومترهای موجود یکی به شکل U وارونه است که مستقیماً اختلاف فشار را بر حسب سانتیمتر آب می دهد و دیگری به شکل U است که اختلاف فشار را بر حسب سانتیمتر جیوه بیان می کند.

تئوری آزمایش

رفتار متوسط زمانی که با فرمول خواص و پارامترهای جریان، در جریان درهم مانند جریان آرام است با این تفاوت که تنشهای اضافی دیگری به نام تنشهای ظاهری که اثرات درهمی را در بر دارند در آن وجود دارد. تنشهای ظاهری جریان درهم بسیار بزرگتر از تنشهای لزجی معمولی هستند، بطوریکه در جریانهای درهم از تنشهای لزجی صرفنظر می‌شود.

بنابراین در اینجا نیز می‌توان پروفیل سرعت متوسط زمانی در امتداد جریان را ثابت گرفت و نیز از فشار یکنواخت P در مقاطع لوله استفاده می‌نماییم.

معلوم شده است که تغییرات فشار در طول لوله در جریان درهم وابسته به کمیات زیر است:

:D قطر لوله

:L طولی از لوله که تغییرات فشار در آن مورد نظر است.

 

 

این معادله خط راستی با شیب 1- در دیاگرام مودی می باشد. از این رابطه برای حل مسائل جریان آرام در لوله ها استفاده می شود. این معادله برای تمامی زبری ها کاربرد دارد زیرا افت هد در جریان آرام مستقل از زبری است. بلافاصله پس از عدد رینولدز بحرانی تمام منحنی‌های مربوط به زبری‌های مختلف بر منحنی‌های صاف منطبق‌اند و سپس از روی آن جدا می‌شوند به نحوی که هر چه زبری بیشتر باشد این جدا شدن زودتر اتفاق می‌افتد. بخشی از هر منحنی که با منحنی لوله صاف منطبق است ناحیه لوله صاف حریان نامیده می‌شود. به علاوه می‌توان ملاحظه کرد که پس از گذر از این ناحیه هر منحنی سرانجام به خطی مستقیم به موازات محور افقی تبدیل می‌شود.

  متن کامل را می توانید بعد از پرداخت آنلاین ، آنی دانلود نمائید، چون فقط تکه هایی از متن به صورت نمونه در این صفحه درج شده است.

پس از پرداخت، لینک دانلود را دریافت می کنید و ۱ لینک هم برای ایمیل شما به صورت اتوماتیک ارسال خواهد شد.

 
« پشتیبانی فروشگاه مرجع فایل این امکان را برای شما فراهم میکند تا فایل خود را با خیال راحت و آسوده دانلود نمایید »
/images/spilit.png
اشتراک بگذارید:

دانلود با لینک مستقیم


تحقیق افت اصطکاکی در لوله ها

تحقیق در مورد میراگرهای اصطکاکی دورانی

اختصاصی از یاری فایل تحقیق در مورد میراگرهای اصطکاکی دورانی دانلود با لینک مستقیم و پر سرعت .

تحقیق در مورد میراگرهای اصطکاکی دورانی


تحقیق در مورد میراگرهای اصطکاکی دورانی

تحقیق در مورد میراگرهای اصطکاکی دورانی

فایل Word قابل ویرایش

فهرست مطالب:

1- مقدمه

2- تاریخچه کارهای انجام شده

3- معرفی میراگر اصطکاکی دورانی

3- مدل قاب مجهز به میراگر اصطکاکی دورانی و پارامترهای مؤثر بر میراگر

4- مکانیزم و عملکرد میراگر اصطکاکی دورانی

5- نمونه هایی از مقاوم سازی های انجام شده

6- نتایج بررسی های قبلی انجام شده

منابع و مراجع

 


دانلود با لینک مستقیم


تحقیق در مورد میراگرهای اصطکاکی دورانی

پایان نامه رشته عمران عملکرد میراگرهای اصطکاکی Pall در مقایسه با سیستمهای CBF و EBF

اختصاصی از یاری فایل پایان نامه رشته عمران عملکرد میراگرهای اصطکاکی Pall در مقایسه با سیستمهای CBF و EBF دانلود با لینک مستقیم و پر سرعت .

پایان نامه رشته عمران عملکرد میراگرهای اصطکاکی Pall در مقایسه با سیستمهای CBF و EBF


پایان نامه رشته  عمران 	 عملکرد میراگرهای اصطکاکی Pall در مقایسه با سیستمهای CBF و EBF

خلاصه پایان نامه:

 میراگرهای اصطکاکی Pall، که در محل تلاقی مهاربندها در یک قاب خمشی نصب می شوند، از جمله سیستمهایی هستند که تاکنون در ساختمانهای زیادی در دنیا مورد استفاده قرار گرفته و در اثر زلزله های گوناگون نیز عملکرد مناسبی داشته اند. در اینجا ساختمان جدید پژوهشگاه بین المللی زلزله شناسی و مهندسی زلزله با استفاده از این میراگرها طراحی شده و سپس رفتار این سیستم با سیستمهای CBF (قاب با مهاربند هم مرکز) و EBF (قاب با مهاربند خارج از مرکز) که قبلاً بر روی ساختمان مزبور بررسی شده است [7]، مقایسه می گردد.

در این پایان نامه ضمن اینکه مقایسه ای میان سیستمهای مرسومی چون CBF و EBF با میراگر اصطکاکی Pall صورت می گیرد، روشی برای طراحی قابها با میراگر مزبور معرفی شده است [3] که با توجه به سهولت آن، قابل استفاده در دفاتر مهندسی می باشد. اگر ساخت چنین میراگرهایی در کشور میسر شود، که البته چندان نیز مشکل نمی نماید، بدون تحلیلهای طولانی، وقت گیر و خسته کننده به سادگی می توان سازه هایی از این دست را طراحی نمود و در صنعت ساخت و ساز مورد استفاده قرار داد.


دانلود با لینک مستقیم


پایان نامه رشته عمران عملکرد میراگرهای اصطکاکی Pall در مقایسه با سیستمهای CBF و EBF

دانلود مقاله جوشکاری اصطکاکی چرخشی آلیاژ

اختصاصی از یاری فایل دانلود مقاله جوشکاری اصطکاکی چرخشی آلیاژ دانلود با لینک مستقیم و پر سرعت .

 

 

-جوشکاری اصطکاکی چرخشی آلیاژ A16092/17.5Sicp/T-6mmc's
3-1-دور نما
جوشکاری اصطکاکی چرخشی (FSW) یک روش نسبتاً نوین جوشکاری و اتصال قطعات است که در ابتدا توسط موسسه ی جوشکاری کمبریج انگلستان ابداع شد و توسعه یافت. از سال 1993 این روش توسط بسیاری از محققین تدریس شده است. هر چند، این روش را می توان به عبارتی به عنوان ترکیبی از اکستروژن و آهنگری فلزات در دمای بالا تعریف کرد. این فرآیند به عنوان فرآیندی با حالت جامد فرض میشود و نیازی به محافظت گازی و فلز جوش ندارد.
شکل 2 به صورت شماتیک بیانگر پروسه ی جوش اصطکاکی چرخشی است. در این روش جوشکاری از یک ابزار میله ای شکل چرخنده و مصرف نشدنی استفاده میشود که به آرامی در خط پیوند و قطعه فرو میرود. این نفوذ تا جایی ادامه دارد که شانه ی ابزار میله ای در تماس نزدیک با قطعه کار قرار می گیرد. با چرخش و حرکت ابزار میله ای به جلو در طول خط اتصال، مواد موجود در خط اتصال شروع به گرم شدن میکنند که باعث سیلان یافتن ماده حول ابزار چرخنده میشود و با حرکت ابزار به جلو، ماده ی سیلان یافته شروع به محکم مثل میکند.
این منبع حرارتی عمدتاً به دلیل اصطکاک و تغییر شکل محلی ایجاد شده حین نگاه داشتن شانه ی ابزار میله ای در تماس نزدیک با قطعه کار ایجاد شده است. قطعه کارها باید به شکلی ایمن به یک سطح اتکای پشتیبان مقید شده باشند تا از حرکت آنها تا جابجایی شان در سطح اتصال دو قطعه جلوگیری شود. نکته ی قابل توجه درباره ی این روش جوشکاری این است که دمایی که فرآیند در آن رخ میدهد پایین تر از دمای ذوب فلزات قطعه کار است که همین موضوع باعث کاهش ناهنجاری های ناشی از انجماد شده و از واکنش های شیمیایی نا مطلوب جلوگیری میکند. هر چند، این روش مانند دیگر روش های جوشکاری مزیت ها و محدودیت هایی دارد که در این جا به صورت خلاصه و کوتاه به برخی از آنها اشاره خواهد شد.
شکل 2- نمایش شماتیک فرآیند جوش اصطکاکی چرخشی
3-2-شیوه های آزمایشگاهی
موردی را در نظر بگیرید که در آن ابزار میله ای مورد استفاده برای این تحقیق عملی طراحی شده بود به طوری که برای ورق های با ضخامت 0.125 اینچ مناسب باشد و طول این ابزار می تواند برای ضخامت های متفاوت ورق ها به طور دستی تنظیم شود. همانگونه که در شکل 3 نشان داده شده است، ابزار دارای شانه ی با قطر 0.475 اینچ بوده است و روی بخش میله ای رزوه های چپ گرد شیب دار یکپارچه ی 10-24 وجود دارد. برای رسیدن به طول بهینه ای برای ابزار میله ای از شبیه سازی کامپیوتری استفاده شد. این طول بهینه، معادل 0.120 اینچ اندازه گیری شد که برای بدست آوردن یک جوش بهینه با نفوذ کامل در نظر گرفته شد. این ابزار میله ای به صورت مستقل توسط رابرت کارتر، معاون مامور تحقیق، طراحی شده و هیچ اطلاعات خصوصی (دارای مالک شخصی) را شامل نمیشود.
شکل 3- جوش اصطکاکی چرخشی در عمل و طراحی هندسی ابزار میله ای
با توجه به طبیعت سایشی بسیار بالای این نوع خاص ام ام سی، پوشش بسیار زیاد ابزار میله ای برای محافظت از آن در نظر گرفته شده بود. به همین دلیل، دو ردیف ابزار میله ای با هندسه ی یکسان ولی با پوشش با مقاومت های متفاوت مورد استفاده قرار گرفت. هر دوی این سری ها از فولاد ابزار H-13 ساخته شده بودند که با عملیات حرارتی به درجه ی سختی 53-55 در مقیاس اندازه گیری سختی راکول (HRC) رسیده بودند.
یک سری از این ابزار با پوششی از B4C پوشانیده شده بود تا به سختی سطحی ای به میزان 93-95HRC برسد. سری دیگر ابزار بدون پوشش باقی ماند. دلیل انتخاب B4C به عنوان پوشش، پتانسیل بالای مقاومت پوششی، نرمی فوق العاده و مقاومت خوب به خوردگی و واکنش های شیمیایی مربوط به این نوع پوشش است. این پوشش به کمک یک فرآیند ارزان قیمت و در دمای پایین روی یک سری از ابزار قرار داده شد. شکل 4 نشان دهنده ی مقایسه ای است بین مواد متفاوت مورد نظر برای استفاده به عنوان پوشش در این تحقیق از نظر سختی. یکی از عوامل انتخاب B4C به عنوان پوشش در آزمایش های ابتدایی، فاکتور هزینه ی پایین آن بود. همانطور که در شکل 3 نشان داده شده است، جوش اصطکاکی چرخشی به کمک ماشین فرز کاری افقی پنج محوری کنترل عددی به وسیله ی کامپیوتر کرنی اندترکر (Kearney & Trecker) که برای همین فرآیند بهبود یافته بود انجام میشد. بعد از جوشکاری قطعات تحت آزمایش اشعه ی ایکس و آزمایش نفوذ قرار گرفتند. پس از این آزمایشات،‌این قطعات ماشین کاری شده و به قطعاتی برای آزمایش کشش و نمونه هایی برای تحلیل زیر ساختار تقسیم شدند.
این نمونه ها در شرایط جوشکاری و شرایط تحت عملیات حرارتی T6، تحت ‌آزمایش کشش قرار می گرفتند. مشخصات شرایط T6 توسط تولید کننده توصیه میشد و شامل عملیات حرارتی در 1.030F برای مدت 3 ساعت و سرد کردن توسط آب بود. سپس در 325F، به مدت 8 ساعت تحت سخت گردانی طولانی مدت قرار می گرفت و با کمک هوا سرد میشد.
شکل 4-مقایسه ی سختی مواد مورد نظر به عنوان پوشش ابزار
MMC مورد استفاده در این تحقیق آلیاژ 6092 آلومینیوم بود که 17.5 درصد Sic به صورت ذرات به شکل همگن در شبکه ی آن پخش شده بود. این ماده توسط شرکت کامپوزیت های آلومینیومی DWA واقع در شهر چتس ورس در ایالت کالیفورنیا، به شکل صفحاتی با ابعاد 0.125×12×6 اینچ با شرایط عملیات حرارتی T6 قبل از جوشکاری، تامین شده بودند. جدول 1 ترکیبات شیمیایی آلیاژ 6092 آلومینیوم را نشان میدهد و جدول 2 بیانگر برخی از ویژگی های فیزیکی و مکانیکی تامین شده توسط تهیه کننده ی ماده یعنی شرکت کامپوزیت های آلومینیوم DWA است.
جدول1- ترکیبات شیمیایی آلیاژ 6092 آلومینیوم به عنوان یک ماده ی شبکه ای
جدول2- ویژگی های محصول آلیاژ 6092 آلومینیوم، تقویت شده با 17.5 درصد ذرات SiC
جدول 3 پارامترهای جوش اصطکاکی چرخشی (FSW) را نشان میدهد. در این جدول توضیحاتی برای این پارامترها ارائه شده که از طریق آزمایش و تجربه برای مقابله با تسلیم در برابر جوش صوتی در این تحقیق به دست آمده اند. این پارامترها به عنوان راهنماهایی برای جوش اصطکاکی چرخشی mmc ها مورد استفاده قرار می گیرند. ذکر این نکته ضروری است که این پارامترها برای تحقیق دوباره ی انجام پذیری و عملی بودن این فرآیند انتخاب شده بودند و به حالت بهینه در نیامده بودند.
فرسایش ابزار با اندازه گیری ابعاد قبل و بعد از هر جوش کنترل میشد. ابزار بدون پوشش در ابتدای تحقیق برای دستیابی به پارامترهای جوشکاری قابل قبول مورد استفاده قرار می گرفتند و به منظور دستیابی به اطلاعات به دست آمده از یک سری منتخب پارامترها، استفاده می شدند. ابزار پوشش داده شده به کمک B4C در بخش پایانی این تحقیق برای دستیابی به اطلاعات درباره ی پارامترهای منتخب در این حالت استفاده شدند.
جدول3- پارامترهای تجربی به دست آمده برای فرآیند FSW مربوط به MMC ها.
3-3-نتایج
3-3-1-تحلیل ریز ساختار
هیچ اثری از ترک در نمای مقطعی عرضی جوش که با کمک ریز بینی 400 برابر توری به دست آمده، مشاهده نشد. با این حال بازرسی دیداری نشان داد که قسمت بالایی جوشها به کلی زبر بودند. در مقایسه با آلیاژهای یکپارچه، قسمت تاج (قسمت بالایی) یک جوش اصطکاکی چرخشی معمول آلیاژ آلومینیومی ظاهری کاملاً صیقلی دارد. تقریباً تمام جوش هایی که با مواد mmc انجام شدند، در قسمت تاج جوش ظاهری یکپارچه ایجاد کردند که یادآور حالتی است که یک شغل انتظار دارد برای یک سطح سیمانی معمول مشاهده کند. این ظاهر زبر به دلیل نچسبیدن ذرات Al, SiC در سطح جوش در مجاورت شانه ی ابزار رخ میدهد. این امر که ناهنجاری به طور نسبی با استفاده از ابزار پوشش یافته با B4C که سختی بیشتر و نرمی (چربی پذیری) کمتری داشته و به ماده امکان اتصال راحت تری میدهند، کاهش می یابد، روشن شده بود. با این حال پس از انتها چند اینچ جوشکاری، ذرات SiC شروع به پاک کردن B4C از لبه ی خارجی شانه ی ابزار میکنند. در نتیج به محض ساییده شدن پوشش، زبری دوباره ظاهر میشود. البته آن طور که به نظر می آید این زبری ایجاد شده تنها یک ناهنجاری سطحی بوده و تاثیری روی ویژگی های کششی نمونه ندارد. شکل 5 یک نمای مقطع عرضی را برای یک اتصال FSW نشان میدهد که به کمک ابزار میله ای بدون پوشش ایجاد شده است.
شکل5-نمای مقطع عرضی یک اتصال FSW برای mmc ها (بزرگنمایی 10 برابر)
نکته ی قابل توجه در بررسی قسمت ریشه ی بعضی از جوش های mmc ها این است که برخی از نمونه ها پس از جوشکاری به سطح اتکای پشتیبان متصل شده بودند. این پدیده زمانی رخ می داد که ماده ای که مستقیماً زیر ابزار میله ای و در نزدیکی سطح اتکای پشتیبان قرار داشت به دلیل حرارت و فشار بسیار زیاد ناشی از فرآیند جوشکاری در این منطقه، به سطح اتکای پشتیبان جوش شده، اتصال می یافت. مشاهدات انجام شده روی حفره های درونی در قسمت ریشه ای جوش، نشان دهنده ی مکان هایی بودند که ماده به سطح اتکای پشتیبان اتصال می یافت. این اتصال پس از برداشتن قطعه کار ایجاد میشد. چنین حفره های کوچکی به کمک تکنیکی معمول شناسایی شدند. این حفره ها به عنوان نقص هایی که تاثیر بسزایی بر ویژگی های مکانیکی جوش ندارند شناخته شدند. شکل 6 یک ریز ساختار بسیار جالب را در مرز ناحیه ی پیوند با بزرگنمایی 400 برابر نشان میدهد. این طور که به نظر میرسد، ذرات SiC حین حرکت به سمت مرکز ناحیه ی پیوند (HAZ) توسط ابزار میله ای شکسته میشدند و به قطعات کوچکتر تبدیل میشدند.
نیز کمبود تمرکز ذرات با حجم زیاد در لبه های ناحیه ی پیوند مشاهده شده است.
شکل6-تغییرات در اندازه ذرات SiC و توزیع آنها در مرز لبه ی منطقه ای پیوند
3-3-2-اندازه گیری مقاومت کششی
به منظور رسیدن به بازدهی اتصال این جوش های mmc، مقاومت کششی محاسبه شده و بازدهی اتصال به شکل زیر اندازه گیری شد. با استفاده از ابزار بدون پوشش، مقدار اندازه گیری شده برای مقاومت کششی میانگین نهایی (UTS) در دمای اتاق، 44.4ksi بوده است. این مقدار در شرایط جوشکاری اندازه گیری شده بود. مقدار مقاومت کششی 54.7bi پس از عملیات حرارتی و سختی گردانی طولانی مدت در شرایط T6 اندازه گیری شد.
مقدار UTS میانگین برای جوش های انجام شده با ابزار پوشیده شده با B4C در شرایط جوشکاری 433 ksi و در شرایط مورد عملیات حرارتی قرار گرفته ی 61.9ksi, T6 اندازه گیری شده بود. جدول 4 و جدول 5 اطلاعات و داده های کششی برای فرآیند جوشکاری اصطکاکی چرخشی پانل های mmc را نشان میدهند که به ترتیب به کمک ابزار میله ای بدون پوشش و دارای پوشش به دست آمده اند. برای تعیین بازدهی اتصال، مقاومت کششی نهایی ماده ی اصلی به صورت تجربی برابر با 60 ksi در نظر گرفته شد. این نکته در نظر گرفته شده بود که این مقدار 10 درصد کمتر از مقدار مقاومت کششی نهایی موجود در مقالات بوده است. با مقدار تجربی 60ksi، بازدهی اتصال برابر با 61 تا 72 درصد در شرایط جوشکاری و 92 تا 100 درصد بعد از انجام عملیات حرارتی بود. در حالت کلی پوشاندن ابزار میله ای به نظر اثری در بازدهی اتصال ندارد. تحقیق در این مورد با بررسی ابزار میله ای با پوشش و فاقد پوشش و بررسی تاثیر آن ها بر بازدهی اتصال صورت گرفته بود.
جدول4- نتایج مربوط به مقاومت اتصال mmc با استفاده از ابزار میله ای بدون پوشش
جدول5- نتایج مربوط به مقاومت اتصال mmc با استفاده از ابزار میله ای پوشیده شده با B4C

 

3-3-3-اندازه گیری سختی
همانطور که در شکل 7 نشان داده شده است، اندازه گیری سختی در قسمت تاج منطقه ی جوش صورت می گیرفته است. این جوش ها به کمک ابزار میله ای پوشش یافته به کمک B4C صورت گرفتند. از اندازه گیری سختی این طور نتیجه گرفته شده بود که مقاومت تسلیم و کششی در منطقه ی پیوند با زیاد گرم کردن ناشی از جوشکاری اصطکاکی چرخشی، کاهش می یابند. در حالت کلی و در مقایسه با ابزار میله ای بدون پوشش، این طور به نظر می آید که پوشش ایجاد کردن برای ابزار میله ای تاثیری در سختی منطقه ی پیوند ندارد. گر چه برای بسیاری از فرآیندهای اتصالی نیاز به انرژی گرمایی مشهود است، این نکته به سادگی آشکار میشود که هر گونه انرژی گرمایی بیش از اندازه ی ورودی نا مطلوب است. این امر برای جوشکاری اصطکاکی چرخشی که در این تحقیق مورد بررسی است نیز صادق است.

 

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله  10 صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید


دانلود با لینک مستقیم


دانلود مقاله جوشکاری اصطکاکی چرخشی آلیاژ