یعنی مانند طبیعت یک جمعیت از موجودات را تشکیل می دهند و با اعمالی بر روی این مجموعه به یک مجموعه بهینه و یا موجود بهینه دست می یابند.
در واقع هیچگونه انتخابی انجام نمی دهیم (همه عناصر انتخاب می شوند) .
بصورت تصادفی تعدادی از موجودات جمعیت را بعنوان والدین انتخاب می کنیم، این انتخاب می تواند با جایگذاری یا بدون جایگذاری باشد.
در این روشها عناصر با شایستگی بیشتر شانس بیشتری برای انتخاب شدن بعنوان والدین را دارند.
این روشها با استفاده از تکنیک هایی سعی می کنند که انتخاب هایی را ارائه دهند، که هم رسیدن به جواب نهایی را تسریع کنند و هم اینکه کمک می کنند که جواب بهینه تری پیدا شود.
معمول ترین روش های انتخاب
: Elitist Selection
مناسبترین عضو هر اجتماع انتخاب میشود.
Selection Roulette:
یک روش انتخاب است که در آن عنصری که عدد برازش (تناسب) بیشتری داشته باشد، انتخاب میشود.
ScalingSelection
به موازات افزایش متوسط عدد برازش جامعه، سنگینی انتخاب هم بیشتر میشود و جزئیتر. این روش وقتی کاربرد دارد که مجموعه دارای عناصری باشد که عدد برازش بزرگی دارند و فقط تفاوتهای کوچکی آنها را از هم تفکیک میکند.
Tournament Selection
یک زیر مجموعه از صفات یک جامعه انتخاب میشوند و اعضای آن مجموعه با هم رقابت میکنند و سرانجام فقط یک صفت از هر زیرگروه برای تولید انتخاب میشوند.
روش انجام عمل بازترکیبی
روش کار به صورت زیر است:
بصورت تصادفی یک نقطه از کروموزوم را انتخاب می کنیم
ژن های مابعد آن نقطه از کروموزوم ها را جابجا می کنیم
بازترکیبی تک نقطه ای (Single Point Crossover)
اگر عملیات بازترکیبی را در یک نقطه انجام دهیم به آن بازترکیبی تک نقطه ای می گویند.
در این روش یک مکان تصادفی در طول رشته انتخاب می شود و gene ها از این مکان به بعد جابجا می شوند. و....
آشنایی با الگوریتم های ژنتیک