تاریخچه مشتق:
مشتق ایده اصلی حساب دیفرانسیل، بخش اول آنالیز ریاضی است که نرخ لحظهای (یا نقطهای) تغییرات تابع را نشان میدهد. مشتق نیز، نظیر انتگرال، از مسئلهای در هندسه، یعنی یافتن خط مماس در یک نقطه از منحنی ناشی شدهاست.
مفهوم مشتق تا اوائل قرن ۱۷ میلادی، یعنی تا قبل از آنکه ریاضیدان فرانسوی، پییر دو فرما به تعیین اکسترممهای چند تابع خاص دست بزند، تنظیم نشده بود. فرما دریافت که خطوط مماس، در نقاطی که منحنی ماکزیمم یا مینیمم دارد، باید افقی باشد. از اینرو دیده میشود که مسئله تعیین نقاط اکسترمم تابع، به حل مسئله دیگر، یعنی یافتن مماسهای افقی مربوط میشود. تلاش برای حل این مسئله کلیتر بود که فرما را به کشف برخی از ایدههای مقدماتی مفهوم مشتق هدایت کرد.
در نگاه نخست اینطور به نظر میرسید که بین مسئله یافتن مساحت سطح زیر یک نمودار و موضوع تعیین خط مماس بر منحنی در یک نقطه رابطهای وجود ندارد، اما اولین کسی که دریافت این دو مفهومِ به ظاهر دور از هم در واقع ارتباط نسبتاً نزدیکی با هم دارند آیزاک بارو معلم آیزاک نیوتون بودهاست.
اما مفهوم مشتق به شکل امروزی آن، نخستین بار در سال ۱۶۶۶ میلادی توسط نیوتون و به فاصله چند سال بعد از او، توسط گوتفرید لایبنیتس، مستقل از یکدیگر پدید آمد. این دو دانشمند در ادامه کار خود، باز هم به طور مستقل، بخش دوم آنالیز ریاضی یعنی حساب انتگرال را عرضه کردند که اساس آن بر عمل انتگرالگیری قرار دارد.
نیوتون از شیوه استدلال سینماتیک و با دیدگاه فیزیکی به بررسی مشتق پرداخته و از آن برای بدست آوردن سرعت لحظهای استفاده میکرد. اما لایب نیتس با دیگاهی هندسی، از مشتق برای بدست آوردن ضریب زاویه مماس در منحنیها استفاده میکرد. هر یک از این دو دانشمند نمادهای جداگانهای را برای نشان دادن مشتق به کار میبردند.
پیشرفت حساب دیفرانسیل و انتگرال در دوران بعد به آگوستین لویی کوشی، برنارد ریمان و برادران برنولی، یعنی ژاکوب و یوهان، مربوط میشود. گیوم لوپیتال (به فرانسوی: Guillaume de l'Hôpital)، دانشمند فرانسوی، در سال ۱۶۹۶ نخستین کتاب درسی مربوط به آنالیز ریاضی را با نام «آنالیز بینهایت کوچکها برای بررسی منحنیها» منتشر کرد که در واقع خلاصهای از درسهایی بود که یوهان برنولی به عنوان معلم برای او نوشته بود. در این کتاب، قاعده رفع ابهام در حد، با استفاده از مشتق نیز آمده که به قاعده هوپیتال مشهور است ولی در واقع متعلق به یوهان برنولی بودهاست.
فهرست مطالب
مقدمه 1
تاریخچه مشتق 3
مشتقات جزئی با متغیرها ی مقید 5
بررسی مشتق از نظر هندسی
ارتباط مشتق با علم فیزیک 7
مشتق چیست؟ 9
نحوه ی نمایش 10
کاربردها 11
معادلات لاپلاس 15
مشتق تابع 16
مشتقهای یک طرفه 20
مشتق تابع نسبت به تابع 22
مشتق توابع پارامتری 22
مشتق جزئی 24
مشتق جهتدار 25
مشتق تابع برداری 26
مشتق کل 27
مشتق تابع معکوس 28
مشتق مراتب بالاتر 29
مشتق nام چند تابع مهم 29
قاعده لایبنیتس 30
قضیه لاگرانژ 31
قضیه کوشی 32
کاربرد مشتق 32
زاویه بین دو تابع 36
آزمونهای مشتق 38
نقطه عطف 40
قاعده هوپیتال 41
معادلات دیفرانسیل 43
توابع جبری 43
توابع مثلثاتی 44
توابع معکوس مثلثاتی 44
توابع نمایی و لگاریتمی 44
توابع هذلولی 45
منابع 45
شامل 52 صفحه word
دانلود تحقیق مشتقات جزئی