لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه15
خلاصه :
ناحیه بندی تصویر در مورد تصاویر تشدید مغناطیسی (MRI ) کمک بسیاری در تحلیل این تصاویر به پزشکان می کند ، ولی متاسفانه تصاویر MRI همواره همراه با نویز شدید ناشی از عملکرد اپراتور ، عملکرد دستگاه و یا نویز محیطی می باشند که باعث کاهش دقت در ناحیه بندی می شود .
یکی از روشهایی که در مورد ناحیه بندی بسیار استفاده می شود روش fuzzy c-means (fcm ) است که نسبت به نویز پایداری از خود نشان نمی دهد ، در این مقاله سعی در بهبود عملکرد FCM با استفاده از معیار نزدیکی پیکسل ها به هم ( همسایگی آنها ) و همچنین میزان شباهت ویژگی ها به هم ( میزان شباهت کنتراست ) می باشیم ، به این منظور دو ضریب l و در تابع هزینه مربوطه به FCM تعریف کرده و با استفاده از الگوریتم ژنتیک سعی در پیدا کردن مقدار بهینه آنها خواهیم بود .
مقدمه :
امروزه یکی از کاربردهای پردازش تصاویر در مهندسی پزشکی ، تحلیل تصاویر پزشکی توسط کامپیوتر و تشخیص بیماری یا سلامت به طور هوشمند توسط کامپیوتر می باشد ، به منظور تحلیل هر چه
تحقیق در مورد تصاویر در مهندسی پزشکی