پاورپوینت ریاضی چهارم دبستان مبحث جمع و تفریق عدد اعشاری
فرمت فایل: پاورپوینت
تعداد اسلاید: 15
دانلود پاورپوینت ریاضی چهارم دبستان مبحث: جمع و تفریق عدد اعشاری.
پاورپوینت ریاضی چهارم دبستان مبحث جمع و تفریق عدد اعشاری
فرمت فایل: پاورپوینت
تعداد اسلاید: 15
پاورپوینت در مورد کتاب ریاضی چهارم دبستان (تقسیم بر عدد یک رقمی)
فرمت فایل: پاورپوینت
تعداد اسلاید: 12
تقسیم دو رقمی بر یک رقمی
برای شروع درس ، با یک مثال مبحث را آغاز می کنیم .
39 از 3 ده تایی و 9 تا یکی درست شده است .
ابتدا می بینیم در 3 ده تایی یعنی 30 تا ، چند تا 3 تا وجود دارد که می بینیم 10 تا 3 تا وجود دارد و سپس می بینیم در 9 یکی چند تا 3 تایی وجود دارد که می بینیم که سه تا سه تا وجود دارد .
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 18
اعداد
دنیای اعداد بسیار زیباست و ما می توانیم در آن شگفتی های بسیاری را بیابیم. در میان برخی از آنها اهمیت فوق العاده ای دارند، یکی از این اعداد که سابقه ی آشنایی بشر با آن به هزاران سال پیش از میلاد می رسد، عددی است به نام نسبت طلایی یا Golden Ratio.
اگر پاره خطی را در نظر بگیریم و فرض کنیم که آنرا بگونه ای تقسیم کنیم که نسبت بزرگ به کوچک معادل کل پاره خط به قسمت بزرگ باشد، اگر معادله ساده یعنی را حل کنیم. ( کافی است به جای b عدد یک قرار دهیم، بعد a را بدست آوریم)، به نسبتی معدل تقریباً 1/61803399 یا 1/618 خواهیم رسید. شاید باور کردنی نباشد، اما بسیاری از طراحان و معماران بزرگ برای طراحی محصولات خود امروز از این نسبت طلایی استفاده می کنند، چرا که به نظر می رسد ذهن انسان با این نسبت انس دارد و راحت تر آن را می پذیرد.
این نسبت نه تنها توسط معماران و مهندسان برای طراحی استفاده می شود، بلکه در طبیعت نیز کاربردهای بسیاری دارد.
" یک بنای یونان باستان که نسبت طلایی در ساختار آن مشاهده می شود."
به نسبت بین خط های صورت این تصویرها نسبت طلایی گفته می شود.
اهرام مصر
یکی از قدیمی ترین ساخته های بشری است که در آن هندسه و ریاضیات بکار رفته شده است.
مجموعه اهرام GIZA در مصر که قدمت آنها به بیش از 2500 سال پیش از میلاد می رسد، یکی از شاهکارهای بشری است، در آن نسبت طلایی بکار رفته است. به این شکل نگاه کنید که در آن بزرگترین هرم از مجموعه ی هرم GIZA خیلی ساده کشیده شده است.
مثلث قائم الزاویه ای که با نسبت های این هرم شکل گرفته شده باشد به مثلث قائم مصری یا Egyptian Triangle معرف هست و جالب اینجاست که بدانید نسبت وتر به ضلع هم کف هرم معادل با نسبت طلایی یعنی دقیقاً 1/61804 میباشد. این نسبت با عدد طلایی تنها در رقم پنجم اعشار اختلاف دارد، یعنی چیزی حدود یک صد هزارم . حال توجه شما را به این نکته جلب می کنیم که اگر معامله فیثاغورث را برای این مثلث قائم الزاویه بنویسیم به معادله ای مانند خواهیم رسید که حاصل جواب آن همان عدد معروف طلایی خواهد بود. معمولاً عدد طلایی را با نمایش می دهند.
طول وتر برای هرم واقعی حدود 356 متر و طول ضلع مربع قاعده حدوداً معادل 440 متر می باشد، بنابریان نسبت 356 بر 320 معادل نیم ضلع مربع، برابر با عدد 1/618 خواهد شد.
کپلر ( Gohannes Kepler 1571-1630)
منجم معروف نیز علاقه ی بسیاری به نسبت طلایی داشت، به گونه ای که در یکی از کتاب های خود اینگونه نوشت: "هندسه دارای دو گنج بسیار با اهمیت می باشد که یکی از آنها قضیه ی فیثاغورث و دومی رابطه ی تقسیم یک پاره
خط به نسبت طلایی می باشد. اولین گنج را به طلا و دومی را به جواهر تشبیه کرد."
تحقیقاتی که کپلر راجع به مثلثی که اضلاع آن به نسبت اضلاع مثلث مصری باشد به حدی بود که امروزه این مثلث به مثلث کپلر نیز معروف می باشد. کپلر پی به روابط بسیار زیبایی میان اجرام آسمانی و این نسبت طلایی پیدا کرد.
آشنایی با سری فیبونانچی
باورکردنی نیست، اما در سال 1202 لئونارد فیبونانچی توانست به یک سری از اعداد دست پیدا کند، که بعدها به عنوان پایه برای بسیاری از رابطه های فیزیک و ریاضی استفاده شد، کافی است از عدد صفر و یک شروع کنید، آنها را کنار هم بگذارید و عدد بعدی را از جمع کردن دو عدد قبل بدست آورید، به سادگی به این رشته از اعداد خواهید رسید:
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 61
خواص دنباله فیبوناچی و عدد طلایی
1-1- تاریخچه
لئوناردو دا پیزا یا به عبارت مشهورتر فیبوناچی یکی از بزرگترین ریاضی دانان اروپا در سال 1175 در شهر پیزا متولد شد . وی به علت حرفه پدریش که بازرگانی بود به کشورهای بسیاری از جمله مصر و سوریه و ... مسافرت نمود . فیبوناچی در سال 1200 به زادگاه خود یعنی شهر پیزا در ایتالیا مراجعت نمود.
معرفی سیستم اعداد اعشاری به عنوان جایگزینی بسیار کارآمدتر به جای سیستم اعداد رومی که استفاده از آن زمان امپراطوری روم رایج بوده است از جمله مهمترین کارهای این ریاضیدان بزرگ در طول حیاتش بوده است . وی در ابتدای اولین بخش از کتاب خود به نام Liber abci در مورد این سیستم چنین می گوید :
« نه رقم هندی وجود دارد : 1 2 3 4 5 6 7 8 9 که به وسیله آنها و همچنینعلامت . که در عربی صفر نامیده می شود می توان هر عددی را به شیوه هایی که توضیح داده خواهد شد نوشت » .
موارد قابل توجه زیادی در مورد زندگی این ریاضیدان وجود دارد که شاید در مختصر نوشته ای در آینده با نام معرفی فیبوناچی به آنها اشاره خواهیم نمود.
اما آنچه در اینجا موردبحث قرار خواهد گرفت دنباله ای از اعداد می باشد که همه ما در دوران دبیرستان با این دنباله به عنوان یکی از مصادیق دنباله های بازگشتی آشنا شدهایم . هرچند که این دنباله در نگاه اول بسیار ساده و معمولی به نظر می رسد ولی روابط و نکات قابل توجهی در مورد این دنباله ساده وجود دارد که سالیان است توجه بسیاری از متخصصین نظریه اعداد را به خود معطوف کرده و آنها را به شگفتی واداشته است .
2-1- دنباله فیبوناچی چیست :
در دوران حیات فیبوناچی مسابقات ریاضی در اروپا بسیار مرسوم بود . در یکی از همین مسابقات که در سال 1225 در شهر پیزا توسط امپراطور فردریک دوم برگزار شده بود مسئله زیر مطرح شد .
فرض کنیم خرگوشهایی وجود دارند که هر جفت ( یک نر و یک ماده ) از آنها که به سن یک ماهگی رسیده باشند به ازاء هر ماه که از زندگیشان سپری شود یک جفت خرگوش متولد می کنند که آنها هم از همین قاعده پیروی می کنند . حال اگر فرض کنیم این خرگوشها هرگز نمی میرند و در آغاز یک جفت از این نوع خرگوش ها در اختیار داشته باشیم که به تازگی متولد شده اند حساب کنید پس از n ماه چند جفت از این نوع خرگوش خواهیم داشت .
فرض کنیم Xn تعداد جفت خرگوش پس از n ماه باشد ، می دانیم که X2=1,X1=1 ، تعداد جفت خرگوشها در ماه n+1 ام برابر خواهد بود با حاصلجمع تعدادجفت خرگوشهایی که در این ماه متولد می شوند با تعداد جفت خرگوشهای موجود (Xn ) . اما چون هر جفت خرگوش که از دو ماه قبل موجود بوده هم اکنون حداقل دوماه سن خواهند داشت و به سن زاد و ولد رسیده اند تعداد جفت خرگوشهای متولد شده برابر خواهدبود با Xn-1 پس خواهیم داشت :
X1 = 1 , X2=1 , Xn+1=Xn+Xn-1
که اگر از قواعد مذکور پیروی کنیم به دنباله زیر خواهیم رسید که به دنباله فیبوناچی مشهور است .
1,1,2,3,4,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,…
فیبوناچی با حل این مسئله از راه حل فوق دنباله حاصل را به جهان ریاضیات معرفی کرد که خواص شگفت انگیز و کاربردهای فراوان آن تا به امروز نه تنها نظر ریاضیدانان بلکه دانشمندان بسیاری از رشته های دیگر را به خود جلب کرده است .
3-1- عدد طلایی چیست :
پیشینه توجه به این عدد نه به زمان فیبوناچی بلکه به زمانهای بسیار دورتر می رسد. اقلیدس در قضیه سی ام جلد ششم از سیزده جلد کتاب مشهور خود که در آنها هندسه اقلیدسی را بنا نهاد این نسبت را مطرح کرده است .
لوکا پیشولی (Luca Pacioli ) در سال 1509 پس از میلاد کتابی با عنوان نسبت الهی (The Divine Propotion ) تالیف کرد . وی در آن نقاشی هایی از لئوناردو داوینچی آورده است که پنج جسم افلاطونی را نمایش می دهند و در آنها نیز به این نسبت اشاره شده است .
در این نوشته نماد یونانی (Phi ) Ф را برای عدد طلایی برمی گزینیم . هرچند بعضی از ریاضیدانان از نمادهای دیگری مانند ( Tau ) نیز برای نمایش این عدد استفاده نموده اند .
4-1- تعریف عدد طلایی :
عدد طلایی عددی مثبت است که اگر به آن یک واحد اضافه کنیم به مربع آن خواهیم رسید و یا عددی که یک واحد از معکوس خود بزرگتر باشد را عدد طلایی می نامیم. در اثر هر دو تعریف به یک معادله درجه دوم دست خواهیم یافت .
Phi2 = Phi + 1
Phi = 1 + 1/Phi
اگر طرفین را در Phi ضرب کنیم خواهیم داشت : Phi2 = Phi +1
عبارت فوق از ساده ترین تعاریف برای عدد طلایی می باشد .
برای پیداکردن مقدار این عدد کافی است معادله درجه دوم (1) را حل کنیم . می توان این معادله را از روش عمومی حل معادلات درجه دوم به آسانی حل کرد و یا از راه حل زیر برای آن استفاده کرد :
داریم )
از آنجا که عدد موردنظرما مثبت استعدد طلایی برابر خواهد بود با ، اما ریشه دیگر معادله نیز از بابت کاربرد برای ما حائز اهمیت می باشد که آن را با نمایش می دهیم .
اگر نگاه دقیق تری به دو ریشه حاصل از معادله داشته باشیم به روابط جالبی بین آنها دست خواهیم یافت که به راحتی قابل اثبات می باشند ، به عنوان مثال :
5-1- ارتباط عدد طلایی با دنباله فیبوناچی :
روشهای متفاوتی برای بیان رابطه بین عدد طلایی و دنباله فیبوناچی وجود دارد که ما در اینجا به چند نمونه اشاره می کنیم .
1- اگر معادله خط را در نظر بگیریم چون Phi که به عنوان شیب این خط در نظر گرفته شده عددی است گنگ و نمی توان آن را به صورت حاصل تقسیم دو عدد صحیح نوشت خط از هیچ نقطه ای با مختصات (i , j ) به طوریکه j ,i هر دو عدد صحیح باشند نخواهد گذشت به استثنا نقطه مبداء با مختصات (0,0 ) که در تمام خطوط با معادلی کلی y=ax مشترک می باشد.
حال اگر نمودار این خط را رسم کنیم نکته ای که قابل توجه می باشد نزدیکترین نقاط با مختصات ( i , j ) به طوریکه i , j هر دو صحیح باشند به این خط است . در حال حاضر فرض بر آن است که این خط برای تعریف شده هرچند که این مطلب تاثیر چندانی روی استدلال نخواهد داشت اما چون بحث را بر روی اعداد مثبت آغاز کرده ایم اینطور فرض می نمائیم .
برای یافتن نقاط نزدیک به این خط با مختصات صحیح از نقطه ( o , o ) خط را مورد بررسی قرار می دهیم . اگر از نقطه ابتدایی که همانطور که در فوق آمد استثنا میباشد صرف نظر نمائیم . به نظر می رسد نزدیکترین نقطه (1,1 ) می باشند . نقطه بعدی( 2,1) است . پس از آن نقطه (3,2 ) به خط نزدیک می باشد و به ترتیب زیر ادامه خواهدیافت .
(1,l), (2,l),(3,2),(5,2) , (8 ,5) , (13,8) , (21,13) , (34,21) , (55,34),…
صحت مطالب فوق به راحتی قابل بررسی می باشد، باکمی دقت در مختصات این نقاط در خواهیم یافت که این مختصات از الگوی دنباله فیبوناچی پیروی می کند . این نقاط را نقاط فیبوناچی می نمامیم .
2- دومین مطلبی که در زمینه ارتباط Phi با دنباله فیبوناچی قابل ذکر است به این قرار است :
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 32
P502.
7.5 دایره های عدد نویز
در بسیاری از تقویت کننده های RF، برای تقویت سیگنال در سطح نویز حداقل, نیازمند یک سیستم حساب شده می باشیم. متاسفانه طراحی یک تقویت کننده کم نویز با فاکتوهایی نظیر پایداری و بهره سنجیده می شود, برای نمونه در ماکزیمم بهره، نویز حداقل نمی تواند بدست آید. بنابراین اهمیت دارد که روشهایی را که به ما اجازه می دهند که نویز موثر را به عنوان قسمتی از نمودار اسمیت برای هدایت شباهت ها و مشاهده توازن ما بین گین و پایداری نشان می دهد توسعه می دهیم.
از یک نمای تمرینی، جزء موثر تحلیل نویز ، عدد نویز تقویت کننده دو پورتی در فرم ادمیتانسی است .
9.73 2
و یا فرم معادل امپدانسی 9.74
که امپدانس منبع است .
هر دو معادله از ضمیمه H مشتق شدهاند. هنگام استفاده از ترانزیستور بطور معمول چهار پارامتر نویز شناخته می شوند که از طریقdatasheet کارخانه سازنده FET یاBJT یا از طریق اندازه گیریهای مستقیم بدست می آیند . آنها عبارتند از :
- عدد نویز حداقل (همچنین اپتیمم نیز نامیده می شود) که رفتارش بستگی به شرایط پایه ای و عملکرد فرکانسی دارد . اگر وسیله, نویزی نداشته باشد ما میتوانیم Fmin را برابر 1 بدست آوریم.
- مقاومت معادل نویز که برابر عکس رسانایی وسیله میباشد
P 503.
- ادمیانس اپتیمم منبع
بجای امپدانس یا ادمیتانس ، ضریب انعکاس اپتیممoptاغلب لیست می شود. ارتباط ما بین و بوسیله رابطه زیر بیان میشود:
9.75
از زمان انتخاب پارامتر S به عنوان مناسب ترین گزینه برای طرحهای فرکانس بالا ما رابطه9.73را به فرمی تبدیل کردیم که ادمیتانسها با ضرایب انعکاس جایگزین شوند.در کنار 9.75 ما از رابطه زیر در 9.73 استفاده می کنیم :
GS می تواند بصورت نوشته شود و نتیجه نهایی بصورت زیر است :
در رابطه 9.77 مقدار Fmin و Rn و شناخته شده هستند.
بطور کلی مهندس طراح برای تنظیم آزادی عمل دارد تا عدد نویز را تحت تاثیر قرار دهد . برای Гs=Гopt می دانیم که کمترین مقدار ممکن عدد نویز برایF= بدست می آید . برای جواب دادن به این سوال که چگونه با یک عدد نویز خاص اجازه می دهند که بگوییم Fk با Гs مرتبط است رابطه 9.77 را باید بصورت زیر بنویسیم:
که عناصر موجود در طرف راست یک شکل معادله برگشتی را ارائه می دهند . یک ثابت Qk که با معادله زیر بیان می شودمعرفی میکنیم:
و ارنج دوباره عبارتها معادله زیر را می دهد:
تقسیم شدن بر (1+Qk) و به توان دو رساندن بعد از مقداری عملیات جبری نتیجه میدهد:
.P 504
این یک معادله برگشتی مورد نیاز در فرم استاندارد است که می تواند بعنوان قسمتی از نمودار اسمیت ظاهر شده باشد .
که موقعیت مرکز دایره dFK با عدد کمپلکس زیر نشان داده شده است :
و با شعاع
دو نکته جالب توجه و جود دارد که از معادله های 9.83 و 9.84 بدست میآیند .
منیمم عدد نویز برای FK=Fmin بدست می آید که با مکان شعاع هماهنگی دارد .
همه مراکز دایره های نویز ثابت در طول یک خط از محیط به نقطه کشیده شدهاند عدد نویز بزرگتر نزدیکتر به مرکز dFk به سمت محیط حرکت می کند و شعاع rFK بزرگتر می شود . مثال زیر توازن بین بهره و عدد نویز را برای تقویت کننده سیگنال کوچک نشان می دهد .
P 505.
مثال 9.14: یک تقویت کننده سیگنال کوچک برای عدد نویز مینیم وگین مشخص با استفاده از ترانزیستورهای یکسان مانند مثال 9-13 طراحی کنید. یک تقویت کننده قدرت نویز پایین با 8dB بهره و عدد نویزی که کمتر از 1.6dB است رامیتوان بافرض این که که ترانزیستورهاپارامترهای نویز زیررا دارندdB Fmin=1.5 ، طراحی کرد.
حل : عدد نویز مستقل از ضریب انعکاس بار است. هر چند تابعی از امپدانس منبع است .
پس مپ کردن دایره گین ثبت بدست آمده در مثال 9.13 به پلان آسان است. با بکار بردن معادلات 9.64 و 9.65 و مقادیر مثال 9.13 با مرکز و شعاع دایره گین ثابت را پیدا می کنیم: 18º dgs=0.29
یک قرار گرفته در هر جای روی این دایره، مقدار گین مورد نیاز را بر آورده خواهد کرد .
هر چند برای اینکه به جزئیات عدد نویز دست یابیم باید مطمئن باشیم که داخل دایره نویز ثابت FK=2dB قرار دارد.
مرکز دایره نویز ثابت و شعاع آن به ترتیب با استفاده از معادله های 9.83 و 9.84 محاسبه شده اند.
آنها با هم در زیر با ضریب QK لیست شده اند 9.79 را ببینید:
QK=0.2 dFK=0.42 < 45 , rFk=0.36
دایره های آمدهG=8dB و Fk=1.6dB در شکل 9.17 نشان داده شده اند.
شکل 9.17
توجه شود که ماکزیمم بهره قدرت در نقطه ای بدست آمده که
P506.
(مثال 9.11 را برای محاسبات جزئیات ببینید) هرچند عدد نویز مینمم در بدست آمده است که برای این مثال نشان می دهد که دسترسی به ماکزیمم بهره و مینیم عدد نویز بطور همزمان غیر ممکن است. آشکار است که بعضی از توافقات باید صورت گیرد.
برای کوچک کردن عدد نویز برای یک گین داده شده ، ما باید ضریب انعکاس منبع را تا حد امکان نزدیک یه بر گزینیم تا زمانیکه هنوز روی دایره بهره ثابت بماند . با بکار بردن رابطه 9.62 و انتخاب دلخواه ، را بدست می دهد.
عدد نویز تقویت کننده با استفاده از رابطه 9.77 بدست میآید:
9.6 دایره های VSWR ثابت .
در بسیاری از موارد تقویت کننده باید زیر یک مقدار VSWR مشخص که در پورت ورودی و خروجی تقویت کننده اندازه گیری شده بمانند . رنج تغیرات VSWR بین [1.5 , 2.5] باشد1.5<=VSWR<=2.5 همانگونه که از بحثمان در فصل 8 می دانیم , هدف از شبکه های تطبیق اساسا جهت کاهش VSWR در ترانزیستوراست. مشکل از این حقیقت ناشی می شود که, VSWR ورودی (یا (VSWRIMN در ورودی شبکه تطبیق مشخص شده است که در برگشت بوسیله جزءهای اکتیو و از طریق فیدبک بوسیله شبکه تطبیق خروجی (OMN) تحت تاثیر است بر عکس VSWR خروجی (یا (VSWROMN بوسیله OMN و دوباره از طریق فید بک بوسیله IMN مشخص شده است . این گفته ها به یک طرح دو جانبه نزدیک است همانگونه که در بخش 9.4.3 بحث شد.